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Introduction
Inverse planning is at the heart of prostate Volumetric Modulated Arc Therapy (VMAT) treatment procedure
and critically determines its level of success. As practiced now, the capacity of VMAT is greatly underutilized
because of inferior computing performance of existing optimization methods. An alternative mathematical
approach that improves both the efficiency and the efficacy is needed and is the center of this research.
We propose to develop a new innovative inverse planning tool, based on the novel idea of superiorization,
to replace the classical constrained optimization approaches employed in clinics today for prostate VMAT
cases.

Towards this goal, year 1 of the training award focused on formulating the VMAT problem as a con-
strained superiorization problem and on the development of a framework of fast converging inverse planning
algorithms. The new approach was then implemented, tested and evaluated on a previously treated prostate
cancer case where initial results were obtained.

Body
1. Research Accomplishments

SOW Aim 1: Develop algorithms for inverse planning using superiorization techniques
for prostate VMAT

Meeting the goal outlined in the SOW aim 1, we have studied the problem of inverse planning for prostate
VMAT and developed a framework of algorithms using the superiorization methodology that is specifically
tailored to this application. We first defined the problem mathematically by reformulating it as a linear
feasibility problem (instead of a minimization problem) and suggested a solution to solve it using the su-
periorization methodology. In developing the tools, we have also generalized the approach to include other
medical physics applications, and provided conditions that are simple to meet both in theory and in practice.
Our claims were proved mathematically and the results were submitted two journal (archival) publications
[2, 4].

Task 1: Formulating the VMAT treatment planning as a constrained superiorization problem

Our approach to a VMAT treatment planning started by studying the current mathematical models used
for this application. Since the superiorization methodology requires a different mathematical formulation,
the first step was to model the problem accordingly.

Consider the system of equations
Ax = d, (1)

where A is the J × I dose matrix that maps any intensity of beamlets vector x = (xi)I
i=1 ∈ RI onto a dose in

voxels vector d = (dj)J
j=1 ∈ RJ . Here I is the total number of beamlets and J is the total number of voxels.

The minimization problem can then be formulated as

minimize
∑S

s=1 λs

∥∥Asx− d(s)

∥∥2

subject to x ≥ 0,
(2)

where the index s stands for different structures, As is the submatrix of A related to structure s and d(s) is
the subvector of d related to structure s, respectively, and λs is the importance factor associated with the
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sth structure which is decided by the planner. There is an assumption that x is achievable using apertures
(aperture constraints).

Assume that we have S structures, for s = 1, 2, . . . , S, (including the complement of all identified struc-
tures), and denote by Os the set of indices of voxels that belong to the sth structure, such that

Os = {js,1, js,2, . . . js,m(s)} (3)

where m(s) is the number of voxels in this structure. Then the system matrix A can be partitioned into
blocks

A =


A1

A2

...
AS

 (4)

so that a submatrix As will contain the rows from A whose indices appear in Os, (similarly, let d(s) be the
subvector of d whose component indices appear in Os) and then the system becomes

A1

A2

...
AS

x =


d(1)

d(2)

...
d(S)

 . (5)

An optimization method aims at satisfying the system (1) (equivalently (5)) while minimizing a given ob-
jective function.

Reformulating the problem as a constrained superiorization problem: We suggest the follow-
ing modifications to the above modality. Replace the prescription method that gives rise to the system
Ax = d in (1) by a more flexible one in which we ask the planner to provide lower- and upper- dose bounds
vectors, d and d, respectively, on all voxels in all structures, and instead of (2) we aim at solving the following
linear feasibility problem

d ≤ Ax ≤ d. (6)

By transforming the problem of (1) into a linear feasibility problem of the form (6), we allow many iterative
projection method to derive a solution. This enables a formulation for the superiorization methodology to be
applied to VMAT inverse planning problem since many of these algorithms are also perturbation resilient.
Specifically, methods that belong to the two classes of projection methods, String Averaging Projection
(SAP) and Block-Iterative Projection (BIP) methods, can be applied towards solving this formulation and
achieve finding a superior solution in addition to satisfying the feasibility constraints (see [1, 3]). That is, an
x obtainable by a projection method alone will be an intensity of beamlets vector trying to solve (6), while
using a projection method that is also perturbation resilient allows for obtaining an x that solves (6) but
also provides a solution that is superior with respect to an objective function.

The solution vector x of the beamlet intensities that results from the superiorization approach will then
be evaluated. Tools such as dose volume histograms (DVHs) will help assess conformality to the prostate
(the target) and to the organs at risk (OAR). These will be compared against what is recommended by
a physician in the clinic and governed by the specifications of the Radiation Treatment Oncology Group
(RTOG) protocol for prostate cancer patients [5].
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The adaptation to our model based on the RTOG protocol is as follows: Given a structure s that is an
OAR, we define d(s) to be the upper-bound subvector of the prescribed dose

d(s) ≡ d(s), (7)

and define d(s) to be a lower-bound subvector for any target structure s

d(s) ≡ d(s). (8)

This allows the constraints in (6) to be written as

0 ≤ Asx ≤ d(s), (9)

for an OAR structure s and as
d(s) ≤ Asx ≤ e(s), (10)

for a target structure s, where e(s) is a clinically-specified upper-bound subvector for the target.
In assessing the solution provided by the superiorization method, if the acceptance criteria is not met,

then a refined selection of d and d will be provided and the process will repeat until a superior feasible
solution is found (this step is identical to how it is done in the clinic today).

Task 2: Development of a framework for fast converging inverse planning superiorization techniques
Task 7: Investigate the underlying principles and put their concept on a firm mathematical ground

In developing a framework for fast converging inverse planning superiorization techniques we first identified
several problems that currently exist in optimization methods. In classical optimization it is assumed that
there is a constraints set C and the task is to find an x ∈ C for which φ(x) is minimal. Problems with
this approach are the following: (1) The constraints may not be consistent and so C could be empty and
the optimization task as stated would not have a solution. (2) Iterative methods of classical constrained
optimization typically converge to a solution only in the limit. In practice some stopping rule is applied to
terminate the process and the actual output at that time may not be in C and, even if it is in C, it is most
unlikely to be a minimizer of φ over C.

Both problems were addressed in the newly developed superiorization framework. Mathematical defini-
tions and conditions were introduced and were theoretically proven. The new foundations include two new
notions of constraints-compatibility and strong perturbation resiliency. The new concepts allow to take into
the modality the infeasibility and practical convergence problems that exist in optimization methods. More
specifically, in the superiorization model we suggested to replace the constraints set C by a nonnegative
real-valued function Pr that serves as an indicator of how incompatible a given x is with the constraints.
Then the merit of an actual output of an algorithm is given by the smallness of the two numbers Pr(x) and
φ(x). Roughly, if an iterative algorithm produces an output x, then its superiorized version will produce an
output x′ for which Pr(x′) is not larger then Pr(x), but (in general) φ(x′) is much smaller than φ(x).

In addition to the theoretical developments of superiorization, a practical and systematic way was de-
veloped to turn any iterative algorithm that solves a feasibility problem into an algorithm that does supe-
riorization. For an iterative algorithm P and for any optimization criterion φ for which we know how to
produce nonascending vectors (see definition p. 5536 in [4]), the following pseudocode automatically takes
P and produces a version of P that is superiorized for φ (exact details of the procedure can be found on
page 5537 in [4]):
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Superiorized Version of the Basic Algorithm

1. set k = 0

2. set yk = y0

3. set ` = −1

4. repeat

5. set n = 0

6. set yk,n = yk

7. while n<N

8. set vk,n to be a nonascending vector for φ at yk,n

9. set loop=true

10. while loop

11. set ` = `+ 1

12. set βk,n = η`

13. set z = yk,n + βk,nv
k,n

14. if φ (z)≤φ
(
yk
)

then

15. set n=n+ 1

16. set yk,n=z

17. set loop = false

18. set yk+1=AC

(
yk,N

)
19. set k = k + 1

By bridging the gap that typically exist between theory and practice in the new model, superiorization was
made more general. That is, the framework fit many other medical physics application, not just VMAT
or radiation therapy inverse planning type applications. All the results mentioned briefly here have been
published in an archival journal publication in the journal of Medical Physics [4], see the Appendix Section
for the full manuscript.

Another accomplishment related to this task touches on an additional aspect of superiorization. Con-
strained optimization problems that arise in real-life applications are often huge (such an example is the
VMAT problem). It can then happen that the traditional algorithms for constrained optimization require
computational resources that are not easily available and, even if they are, the length of time needed to
produce an acceptable output is too long to be practicable. As part of our goal to show that superioriza-
tion can handle large size problems efficiently, we have illustrated that the computational requirements of a
superiorized algorithm can be significantly less than that of a traditional optimization algorithm, by report-
ing on a comparison of superiorization with the projected subgradient method (PSM), which is a standard
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Total V ariation value Time (seconds)
projected subgradient method 919 2217

superiorization method 873 102

Table 1: Performance comparison of the projected subgradient method and the superiorization method with
Total Variation as the objective function.

method of classical optimization. Table 1 summarizes the comparison we have performed between the PSM
method and the superiorization method. In our experiment, we set the the stopping rule to guarantee that
the output of the superiorization method is at least as constraints-compatible as the output of the PSM.
The superiorization method showed clearly superior efficacy to the PSM: it obtained a result with a lower
objective function value (TV) at less than one twentieth of the computational cost.

The complete report that summarizes this work was submitted to the Journal of Optimization Theory
and Applications and is currently under review [2]. It is attached to this report in the Appendix Section.

Task 3: Implementation and testing of the developed algorithms
In this task we wanted to assess our proposed approach to using superiorization on a realistically yet simple
test case. The goal set here is two-fold: the first is to show that the developed method can produce good re-
sults and the second is to obtain a clear indication if the nonacsending-type superiorization techniques should
be replaced with alternative derivative-free approaches (see, SOW Task 4: the development of alternative
derivative-free techniques to superiorization).

We proposed to use as a test case in this task a previously treated intensity modulated radiation therapy
(IMRT) prostate patient case. As was explained in the research proposal, the VMAT technique delivers
an IMRT type treatment in a single arc. Getting good results on a previously treated IMRT case would
establish a level of confidence that the superiorization method can deliver superior results by referencing a
previously treated clinical case. The modality that was given above (in Task 1) is identical for these two
radiation therapy techniques (i.e., IMRT and VMAT); the difference lies in the size of the problem and
its level of complexity. Since superiorization was never tried with any type of radiation therapy treatment
planning it is important to provide such evidence on an actual clinical case. The mathematical model which
we have developed along with the theories and proofs of the superiorization methodology (in Task 2) fit both
problems. Satisfactory results will encourage us to continue develop the method as it is proposed in Tasks
1 and 2 and tailor it further more to the VMAT approach.

Algorithmic operator and objective function The framework that was developed is quite general for
many medical physics applications. With the modality of the superiorization approach in (6), a choice for
a projection operator that is perturbation resilient is needed as well as a choice of an objective function.
The algorithmic operator that was chosen for our implementation was the Algebraic Reconstruction Tech-
nique (ART) for inequalities constraints. This operator was proven to be perturbation-resilient in [1]. The
constraints of the system in (6) can be thought of as hyperslabs. The algorithm projects the current point
according to its location in relation to the two hyperplanes that form a hyperslab. A geometrical descrip-
tion to this feasibility problem is provided in Figure 1. The analytical formulation associated with it is the
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Figure 1: Geometrical description of ART with inequalities constraints

following:

xk+1 =


xk, if ci ≤

〈
ai, xk

〉
≤ di (case A),

xk + λk
di−〈ai,xk〉
‖ai‖2 ai, if di <

〈
ai, xk

〉
(case B),

xk + λk
ci−〈ai,xk〉
‖ai‖2 ai, if

〈
ai, xk

〉
< ci (case C).

(11)

The objective function used in our implementation was the total variation (TV) functional of the beamlet
intensity vector x, see Eq. (12) in [4] and the discussion in the research proposal under Specific Aim 1
regarding this choice. We denote herein the superiorization algorithm that uses TV as the objective function
by TV-Superiorization.

Prostate patient data and planning The data for testing the approach were of a previously treated
prostate cancer patient. A seven field radiation treatment IMRT plan was created. The organs that were
included in the plan were the prostate (target), rectum, bladder, small bowel (OARs) and the full body.
Figure 2 shows the CT and the contours of these structures. Using RTOG 0815 [5] we set in Table 2 the
acceptance criteria for the implemented TV-Superiorization algorithm.

Results We compared the results when superiorization was present versus when it was not. The TV-
Superiorization algorithm was able to meet the RTOG acceptance criteria while the one without TV-
Superiorization was not. Moreover, the TV-Superiorization algorithm was able to achieve this in a relatively
short amount time of only 12 iterations. Figure 3 shows the DVH curves of the two algorithms side-by-side.
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Figure 2: CT of the prostate patient case used in the experiment.

Organ Target? Acceptance criteria
I. Prostate Yes 1. Dose will be normalized s.t. 98% of the PTV receives the

prescription dose. (Prescribed dose to PTV is 79.2 Gy.)
2. The maximum allowable dose within the PTV is 107%
of the prescribed dose (i.e., maximum allowed dose is 84.744 Gy).
3. The minimum allowable dose within the PTV should be ≥95%
of the prescribed dose (i.e., 100% of the dose should be ≥75.24 Gy.

II. Rectum No 1. No more than 15% volume receives dose that exceeds 75 Gy
2. No more than 25% volume receives dose that exceeds 70 Gy
3. No more than 35% volume receives dose that exceeds 65 Gy
4. No more than 50% volume receives dose that exceeds 60 Gy

III. Bladder No 1. No more than 15% volume receives dose that exceeds 80 Gy
2. No more than 25% volume receives dose that exceeds 75 Gy
3. No more than 35% volume receives dose that exceeds 70 Gy
4. No more than 50% volume receives dose that exceeds 65 Gy

IV. Small Bowel No 1. Upper bound is set to 52 Gy.

Table 2: Acceptance criteria for prostate patients according to RTOG 0815 [5].
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Figure 3: DVH plots for a prostate case experiment with and without TV-Superiorization.

The solid lines represent the TV-Superiorization algorithm and the dashed lines represent the algorithm
without Superiorization. The corresponding numbers for assessing the acceptance criteria are specified in
Table 3. As can be seen, the criteria that is based on the RTOG protocol [5] was fully met by the superior-
ization method for this prostate case.

Training Accomplishments

Task 8: Seminar, lectures and meetings

Task 9: Research training

Task 10: Clinical training

During year 1 of the training award the PI had attended regular meetings, seminars and journal clubs with
presentations on topics related to radiation therapy treatment planning. Other presentations of visiting
scholars and professionals were also available throughout the year and had enriched his knowledge on the
topic. The PI was trained in the clinic to operate the Eclipse system stations for treatment planning available
at Stanford Cancer Center (Eclipse is a commercial tool for treatment planning developed by Varian Medical
Systems). He collaborated with radiation oncologists, radiation therapists, physicists and dosimetrists and
obtained first-hand the knowledge and experience of the process of prostate radiation treatment planning.
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Organ Target? Criterion TV-Superiorization
I. Prostate Yes %vol > 79.2 Gy = 98 %vol > 79.2 Gy = 98

%vol > 84.744 Gy = 0 %vol > 84.6 Gy = 0
%vol > 75.24 Gy = 100 %vol > 75.24 Gy = 100

II. Rectum No %vol > 75 Gy ≤ 15 %vol > 75 Gy ≤ 12.7
%vol > 70 Gy ≤ 25 %vol > 70 Gy ≤ 18.6
%vol > 65 Gy ≤ 35 %vol > 65 Gy ≤ 25.8
%vol > 60 Gy ≤ 50 %vol > 60 Gy ≤ 34.5

III. Bladder No %vol > 80 Gy ≤ 15 %vol > 80 Gy ≤ 2.2
%vol > 75 Gy ≤ 25 %vol > 75 Gy ≤ 4.9
%vol > 70 Gy ≤ 35 %vol > 70 Gy ≤ 6.8
%vol > 65 Gy ≤ 50 %vol > 65 Gy ≤ 8.7

IV. Small Bowel No %vol > 52 Gy ≤ 0 %vol > 1.4 Gy ≤ 0

Table 3: Results of the criteria for the TV-Superiorization algorithm.

Key Research Accomplishments
• Formulated the VMAT treatment planning as a constrained superiorization problem.

• Developed a framework for fast converging inverse planning superiorization techniques.

• Derived the necessary conditions of the superiorization framework for VMAT treatment planning

• Placed the newly developed concepts on a firm mathematical ground.

• Implemented and tested the new superiorization framework and showed good initial results.

• Trained in treating prostate cancer as it is done in the clinic today.

Reportable Outcomes
• Two journal publications were submitted. One appeared in the journal of Medical Physics and another

is currently under review:

1. G.T. Herman, E. Garduño, R. Davidi and Y. Censor, Superiorization: An optimization heuristic
for medical physics, Medical Physics 39 (2012), 5532–5546.

2. Y. Censor, R. Davidi, G.T. Herman, R.W. Schulte and L. Tetruashvili, Projected subgradient
minimization versus superiorization, Journal of Optimization Theory and Applications (submit-
ted).

• The above work has been accepted for presentation at the joint workshop sponsored by the American
Society for Therapeutic Radiology and Oncology (ASTRO), the National Cancer Institute (NCI) and
the American Association of Physicists in Medicine (AAPM) , June 13-14, 2013, National Institutes of
Health, Bethesda, MD, USA.
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• The above work has been accepted for presentation at the workshop on Projection Methods: Theory
and Practice, June 19-21, 2013, Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern,
Germany.

Conclusion
In year 1 we were able to extend the superiorization methodology into a larger framework, one that is more
realistic from the point of view of the application at hand. by taking into account the discrepancy that exist
between theory and practice and incorporate it into our model, we minimized potential issues that typically
appear when a theory is applied to a real-life application.

Superiorization was developed to be a general tool for medical physics applications. It is capable of
turning any iterative algorithm that tries to satisfy a set of constraints into one that is also capable of
superiorizing an objective function. The work that came out of this research can help other applications
that use optimization methods as the main tool.

Using the above methodology, we tailored it specifically to solve the problem of VMAT in radiation
therapy inverse planning. The initial results obtained on a realistic IMRT prostate case were satisfactory
and show good indication that superiorization works and can be applied to a radiation treatment planning
problem such as IMRT and VMAT.

Our next steps include the full implementation, testing and evaluation of VMAT prostate cases. A
thorough investigation as detailed in the SOW is planned in year 2 of this training award.
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Purpose: To describe and mathematically validate the superiorization methodology, which is a re-
cently developed heuristic approach to optimization, and to discuss its applicability to medical physics
problem formulations that specify the desired solution (of physically given or otherwise obtained con-
straints) by an optimization criterion.
Methods: The superiorization methodology is presented as a heuristic solver for a large class of
constrained optimization problems. The constraints come from the desire to produce a solution that
is constraints-compatible, in the sense of meeting requirements provided by physically or otherwise
obtained constraints. The underlying idea is that many iterative algorithms for finding such a solution
are perturbation resilient in the sense that, even if certain kinds of changes are made at the end of each
iterative step, the algorithm still produces a constraints-compatible solution. This property is exploited
by using permitted changes to steer the algorithm to a solution that is not only constraints-compatible,
but is also desirable according to a specified optimization criterion. The approach is very general, it
is applicable to many iterative procedures and optimization criteria used in medical physics.
Results: The main practical contribution is a procedure for automatically producing from any given
iterative algorithm its superiorized version, which will supply solutions that are superior according
to a given optimization criterion. It is shown that if the original iterative algorithm satisfies certain
mathematical conditions, then the output of its superiorized version is guaranteed to be as constraints-
compatible as the output of the original algorithm, but it is superior to the latter according to the
optimization criterion. This intuitive description is made precise in the paper and the stated claims
are rigorously proved. Superiorization is illustrated on simulated computerized tomography data of
a head cross section and, in spite of its generality, superiorization is shown to be competitive to an
optimization algorithm that is specifically designed to minimize total variation.
Conclusions: The range of applicability of superiorization to constrained optimization problems is
very large. Its major utility is in the automatic nature of producing a superiorization algorithm from an
algorithm aimed at only constraints-compatibility; while nonheuristic (exact) approaches need to be
redesigned for a new optimization criterion. Thus superiorization provides a quick route to algorithms
for the practical solution of constrained optimization problems. © 2012 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4745566]

Key words: superiorization, constrained optimization, heuristic optimization, tomography, total
variation

I. INTRODUCTION

Optimization is a tool that is used in many areas of Medi-
cal Physics. Prime examples are radiation therapy treatment
planning and tomographic reconstruction, but there are others
such as image registration. Some well-cited classical publica-
tions on the topic are Refs. 1–12 and some recent articles are
Refs. 13–26.

In a typical medical physics application, one uses con-
strained optimization, where the constraints come from the

desire to produce a solution that is constraints-compatible, in
the sense of meeting the requirements provided by physically
or otherwise obtained constraints. In radiation therapy treat-
ment planning, the requirements are usually in the form of
constraints prescribed by the treatment planner on the doses
to be delivered at specific locations in the body. These doses
in turn depend on information provided by an imaging in-
strument, typically a magnetic resonance imaging (MRI) or
a computerized tomography (CT) scanner. In tomography, the
constraints come from the detector readings of the instrument.

5532 Med. Phys. 39 (9), September 2012 © 2012 Am. Assoc. Phys. Med. 55320094-2405/2012/39(9)/5532/15/$30.00
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In such applications, it is typically the case that a large num-
ber of solutions would be considered good enough from the
point of view of being constraints-compatible; to a large ex-
tent, but not entirely, due to the fact that there is uncertainty
as to the exact nature of the constraints (for example, due to
noise in the data collection). In such a case, an optimization
criterion is introduced that helps us to distinguish the “better”
constraints-compatible solutions (for example, this criterion
could be the total dose to be delivered to the body, which may
vary quite a bit between radiation therapy treatment plans that
are compatible with the constraints on the doses delivered to
individual locations).

The superiorization methodology (see, for example,
Refs. 22 and 27–32) is a recently developed heuristic ap-
proach to optimization. The word heuristic is used here in
the sense that the process is not guaranteed to lead to an op-
timum according to the given criterion; approaches aimed at
processes that are guaranteed in that sense are usually referred
to as exact. Heuristic approaches have been found useful in
practical applications of optimization, mainly because they
are often computationally much less expensive than their ex-
act counterparts, but nevertheless provide solutions that are
appropriate for the application at hand.33–35

The underlying idea of the superiorization approach is the
following. In many applications there exists a computation-
ally efficient iterative algorithm that produces a constraints-
compatible solution for the given constraints. (An example
of this for radiation therapy treatment planning is reported
in Ref. 36, its clinical use is discussed in Ref. 15.) Fur-
thermore, often the algorithm is perturbation resilient in the
sense that, even if certain kinds of changes are made at
the end of each iterative step, the algorithm still produces
a constraints-compatible solution.27–30 This property is ex-
ploited in the superiorization approach by using such pertur-
bations to steer the algorithm to a solution that is not only
constraints-compatible, but is also desirable according to a
specified optimization criterion. The approach is very general,
it is applicable to many iterative procedures and optimization
criteria.

The current paper presents a major advance in the
practice and theory of superiorization. The previous
publications22, 27–32 used the intuitive idea to present some su-
periorization algorithms, in this paper the reader will find a to-
tally automatic procedure that turns an iterative algorithm into
its superiorized version. This version will produce an output
that is as constraints-compatible as the output of the original
algorithm, but it is superior to that according to an optimiza-
tion criterion. This claim is mathematically shown to be true
for a very large class of iterative algorithms and for optimiza-
tion criteria in general, typical restrictions (such as convexity)
on the optimization criterion are not essential for the material
presented below. In order to make precise and validate this
broad claim, we present here a new theoretical framework.
The framework of Ref. 29 is a precursor of what we present
here, but it is a restricted one, since it assumes that the con-
straints can be all satisfied simultaneously, which is often false
in medical physics applications. There is no such restriction
in the presentation below.

The idea of designing algorithms that use interlacing steps
of two different kinds (in our case, one kind of steps aim at
constraints-compatibility and the other kind of steps aim at
improvement of the optimization criterion) is well-established
and, in fact, is made use of in many approaches that have
been proposed with exact constrained optimization in mind;
see, for example, the works of Helou Neto and De Pierro,37, 38

Nurminski,39 Combettes and co-workers,40, 41 Sidky and co-
workers,23, 42, 43 and Defrise and co-workers.44 However, none
of these approaches can do what can be done by the superi-
orization approach as presented below, namely, the automatic
production of a heuristic constrained optimization algorithm
from an iterative algorithm for constraints-compatibility. For
example, in Ref. 37 it is assumed (just as in the theory pre-
sented in our Ref. 29) that all the constraints can be satisfied
simultaneously.

A major motivator for the additional theory presented in
the current paper is to get rid of this assumption, which
is not reasonable when handling real problems of medical
physics. Motivated by similar considerations, Helou Neto and
De Pierro38 present an alternative approach that does not
require this unreasonable assumption. However, in order to
solve such a problem, they end up with iterative algorithms
of a particular form rather than having the generality of be-
ing able to turn any constraints-compatibility seeking algo-
rithm into a superiorized one capable of handling constrained
optimization. Also, the assumptions they have to make in
order to prove their convergence result (their Theorem 15)
indicate that their approach is applicable to a smaller class
of constrained optimization problems than the superioriza-
tion approach whose applicability seems to be more general.
However, for the mathematical purist, we point out that they
present an exact constrained optimization algorithm, while
superiorization is a heuristic approach. Whether this is rel-
evant to medical physics practice is not clear: exact algo-
rithms are not run forever, but are stopped according to some
stopping-rule, the relevant questions in comparing two algo-
rithms are the quality of the actual output and the computation
time needed to obtain it.

Ultimately, the quality of the outputs should be evaluated
by some figures of merit relevant to the medical task at hand.
An example of a careful study of this kind that involves su-
periorization is in Sec. 4.3 of Ref. 30, which reports on com-
paring in CT the efficacy of constrained optimization recon-
struction algorithms for the detection of low-contrast brain
tumors by using the method of statistical hypothesis testing
(which provides a P-value that indicates the significance by
which we can reject the null hypothesis that the two algo-
rithms are equally efficacious in favor of the alternative that
one is preferable). Such studies bundle together two things:
(i) the formulation of the constrained optimization task and
(ii) the performance of the algorithm in performing that task.
The first of these requires a translation of the medical aim into
a mathematical model, it is important that this model should
be appropriately chosen.

The superiorization approach is not about choosing this
model, it kicks in once the model is chosen and aims
at producing an output that is “good” according to the
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mathematical specifications of the constraints and of the
optimization criterion. Thus superiorization has been used
to compare the effects on the quality of the output in CT
when the optimization criterion is specified by total vari-
ation (TV) versus by entropy28 or versus by the �1-norm
of the Haar transform.32 However, the current paper is not
about discussing how to translate the underlying medical
physics task into a constrained optimization problem. For
our purposes here, we are assuming that the mathematical
model has been worked out and concentrate on the algo-
rithmic approach for solving the resulting constrained op-
timization problem. We claim that the evaluation of such
algorithms should not be based on the medical figures of
merit mentioned at the beginning of the previous paragraph,
but rather on their performance in solving the mathemat-
ical problem. If “good” solutions to the constrained opti-
mization problem are not medically efficacious, that indi-
cates that something is wrong with the mathematical model
and not that something is wrong with the algorithmic ap-
proach. For this reason, in this paper we will not carry out
a careful investigation of the medical efficacy of any algo-
rithm in the manner that we have done in Sec. 4.3 of Ref. 30,
but will restrict ourselves to a simple illustration of the per-
formance of the superiorization approach as compared to the
previously published algorithm of Ref. 42 that is aimed at per-
forming exact minimization.

Examples of such studies already exist. Superiorization
was compared in Ref. 27 with Algorithm 6 of Ref. 40 and in
Ref. 45 with the algorithm of Goldstein and Osher that they
refer to as TwIST (Ref. 46) with split Bregman47 as the sub-
step. In both cases the implementation was done by the pro-
posers of the algorithms. In these reported instances superi-
orization did well: the constraints-compatibility and the value
of the function to be minimized were very similar for the out-
puts produced by the algorithms being compared, but the su-
periorization algorithm produced its output four times faster
than the alternative. It would be unjustified to draw any gen-
eral conclusions on the mathematical performance and speed
of superiorization based on just a few experiments, but the
reported results are encouraging.

However, the main reason why we advocate superioriza-
tion is different from what is discussed above. The reason
why we claim it to be helpful in medical physics research
is that it has the potential of saving a lot of time and ef-
fort for the researcher. Let us consider a historical example.
Likelihood optimization using the iterative process of expec-
tation maximization (EM) (Ref. 48) gained immediate and
wide acceptance in the emission tomography community. It
was observed that irregular high amplitude patterns occurred
in the image with a large number of iterations, but it was
not until five years later that this problem was corrected49

by the use of a maximum a posteriority probability (MAP)
algorithm with a multivariate Gaussian prior. Had we had
at our disposal the superiorization approach, then the intro-
duction of an optimization criterion (Gaussian or other) into
the iterative EM process would have been a simple matter
and we would have saved the time and effort spent on de-
signing a special purpose algorithm for the MAP formula-

tion. A T V -superiorization of the EM algorithm is presented
in Ref. 50.

Even though our major claim for superiorization is that it
provides a quick route to algorithms for the practical solution
of constrained optimization problems, before leaving this in-
troduction let us bring up a question that has to do with the
performance of the resulting algorithms: Will superiorization
produce superior results to those produced by contemporary
MAP methods or is it faster than the better of such methods?
At this stage we have not yet developed the mathematical no-
tation to discuss this question in a rigorous manner, we return
to it in Subsection II.F.

In Sec. III, we present in detail the superiorization method-
ology. In Sec. III, we provide an illustrative example by re-
porting on reconstructions produced by algorithms applied to
simulated computerized tomography data of a head cross sec-
tion. In the final section, we discuss our results and present
our conclusions.

II. THE SUPERIORIZATION METHODOLOGY

II.A. Problem sets, proximity functions, and
ε-compatibility

Although optimization is often studied in a more general
context (such as in Hilbert or Banach spaces), in medical
physics we usually deal with a special case, where optimiza-
tion is performed in a Euclidean space RJ (the space of J-
dimensional vectors of real numbers, where J is a positive in-
teger). As often appropriate in practice, we further restrict the
domain of optimization to a nonempty subset � of RJ (such
as the non-negative orthant RJ

+ that consists of vectors all of
whose components are non-negative).

We now turn to formalizing the notion of being compatible
with given constraints, a notion that we have used informally
in Sec. I. In any application, there is a problem set T ; each
problem T ∈ T is essentially a description of the constraints
in that particular case. For example, for a tomographic
scanner, the problem of reconstruction for a particular patient
at a particular time is determined by the measurements taken
by the scanner for that patient at that time. The intuitive
notion of constraints-compatibility is formalized by the use
of a proximity function Pr on T such that, for every T ∈ T ,
PrT maps � into R+, the set of non-negative real numbers;
i.e., PrT : � → R+. Intuitively, we think of PrT (x) as an
indicator of how incompatible x is with the constraints of T.
For example, in tomography, PrT (x) should indicate by how
much a proposed reconstruction that is described by an x in
� violates the constraints of the problem T that are provided
by the measurements taken by the scanner. For example, if
we use b to denote the vector of estimated line integrals based
on the measurements obtained by the scanner and by A the
system matrix of the scanner, then a possible choice for the
proximity function is the norm-distance ‖b − Ax‖, which
we will use as an example in the discussions that follow. An
alternative legitimate choice for the proximity function is the
Kullback-Leibler distance KL(b, Ax), which is the negative
log-likelihood of a statistical model in tomography. The
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special case PrT (x) = 0 is interpreted by saying that x is
perfectly compatible with the constraints; due to the presence
of noise in practical applications, it is quite conceivable that
there is no x that is perfectly compatible with the constraints,
and we accept an x as constraints-compatible as long as the
value of PrT (x) is considered to be small enough to justify
that decision. Combining these two concepts leads to the
notion of a problem structure, which is a pair 〈T ,Pr〉, where
T is a nonempty problem set and Pr is a proximity function
on T . For a problem structure 〈T ,Pr〉, a problem T ∈ T , a
non-negative ε, and an x ∈ �, we say that x is ε-compatible
with T provided that PrT (x) ≤ ε.

As an example (whose applicability to tomographic re-
construction is illustrated in Sec. III), consider the problem
structure that arises from the desire to find non-negative so-
lutions of sequences of blocks of linear equations. Then the
appropriate choices are � = RJ

+ and the problem structure is
〈S, Res〉, where the problem set S is

S = {({(a1, b1), . . . , (a�1 , b�1 )}, . . . ,
{(a�1+...+�W−1+1,b�1+...+�W−1+1), . . . , (a�1+...+�W ,b�1+...+�W

)})|
W is a positive integer and,

for 1 ≤ w ≤ W, �w is a positive integer and,

for 1 ≤ i ≤ �1 + . . . + �W , ai ∈ RJ and bi ∈ R} (1)

and the proximity function Res on S is defined, for any
problem S = ({(a1, b1),. . . , (a�1 , b�1 )}, . . . , {(a�1+...+�W−1+1,

b�1+...+�W−1+1), . . . , (a�1+...+�W , b�1+...+�W
)}) in S and for any

x ∈ �, by

ResS(x) =
√√√√�1+...+�W∑

i=1

(bi − 〈ai , x〉)2. (2)

Note that each element of this problem set S specifies an
ordered sequence of W blocks of linear equations of the form
〈ai , x〉 = bi where 〈*,*〉 denotes the inner product in RJ (and
thus S is an appropriate representation of the so-called “or-
dered subsets” approach to tomographic reconstruction,51 as
well as of other earlier-published block-iterative methods that
proposed essentially the same idea52–54). The proximity func-
tion Res on S is the residual that we get when a particular x is
substituted into all the equations of a particular problem S.

II.B. Algorithms and outputs

We now define the concept of an algorithm in the general
context of problem structures. For technical reasons that will
become clear as we proceed with our development, we intro-
duce an additional set �, such that � ⊆ � ⊆ RJ . (Both �

and � are assumed to be known and fixed for any particu-
lar problem structure 〈T ,Pr〉.) An algorithm P for a problem
structure 〈T ,Pr〉 assigns to each problem T ∈ T an oper-
ator PT : � → �. This definition is used to define iterative
processes that, for any initial point x ∈ �, produce the (po-
tentially) infinite sequence ((PT )k x)∞k=0 (that is, the sequence
x, PT x, PT (PT x), · · ·) of points in �. We discuss below how
such a potentially infinite process is terminated in practice.

Selecting � = RJ
+ and � = RJ for the problem structure

〈S, Res〉 of Subsection II.A, an example of an algorithm R is
specified by

RS x = QBSW
· · · BS1 x, (3)

where S is the problem specified above in Eq. (2) and, for
1 ≤ w ≤ W, BSw

: � → � is defined by

BSw
x = x + 1

�w

�1+...+�w∑
i=�1+...+�w−1+1

bi − 〈ai , x〉
‖ai‖2

ai , (4)

where ‖a‖ denotes the norm of the vector a in RJ , and Q :
� → � is defined by

(Qx)j = max{0, xj }, for 1 ≤ j ≤ J. (5)

Note that RS : � → �. This specific algorithm R is a typ-
ical example of the so-called block-iterative methods men-
tioned above. Except for the presence of Q in Eq. (3), which
enforces non-negativity of the components, it is identical to
an algorithm used and illustrated in Ref. 31. With the Q ab-
sent from the definition of the algorithm, � has to be the
whole of RJ ; the practical consequence of the presence ver-
sus the absence of Q in the tomographic application is illus-
trated in Subsection III.D. We also note that special cases of
the presented algorithm include the classical reconstruction
methods such as algebraic reconstruction technique (ART) (if
�w = 1, for 1 ≤ w ≤ W ) and SIRT (if W = 1); see, for ex-
ample, Chaps. 11 and 12 of Ref. 55.

For a problem structure 〈T ,Pr〉, a T ∈ T , an ε ∈ R+,
and a sequence R = (xk)∞k=0 of points in �, we use O(T,
ε, R) to denote the x ∈ � that has the following properties:
PrT (x) ≤ ε and there is a non-negative integer K such that
xK = x and, for all non-negative integers k <KPrT (xk) > ε.
Clearly, if there is such an x, then it is unique. If there is no
such x, then we say that O(T, ε, R) is undefined, otherwise
we say that it is defined. The intuition behind this definition
is the following: if we think of R as the (infinite) sequence
of points that is produced by an algorithm (intended for the
problem T) without a termination criterion, then O(T, ε, R) is
the output produced by that algorithm when we add to it in-
structions that make it terminate as soon as it reaches a point
that is ε-compatible with T.

II.C. Bounded perturbation resilience

The notion of a bounded perturbations resilient algorithm
P for a problem structure 〈T ,Pr〉 has been defined in a math-
ematically precise manner.29 However, that definition is not
satisfactory from the point of view of applications in medical
physics (or indeed in any area involving noisy data), because
it is useful only for problems T for which there is a perfectly
compatible solution (that is, an x such that PrT (x) = 0). We
therefore extend here that notion as follows. An algorithm P
for a problem structure 〈T ,Pr〉 is said to be strongly pertur-
bation resilient if, for all T ∈ T ,

(i) there exists an ε ∈ R+ such that O(T , ε, ((PT )k x)∞k=0)
is defined for every x ∈ �;
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(ii) for all ε ∈ R+ such that O(T , ε, ((PT )k x)∞k=0) is de-
fined for every x ∈ �, we also have that O(T, ε′, R)
is defined for every ε′ > ε and for every sequence
R = (xk)∞k=0 of points in � generated by

xk+1 = PT (xk + βkv
k), for all k ≥ 0, (6)

where βkv
k are bounded perturbations, meaning that

the sequence (βk)∞k=0 of non-negative real numbers

is summable (that is,
∑∞

k=0
βk < ∞), the sequence

(vk)∞k=0 of vectors in RJ is bounded and, for all
k ≥ 0, xk + βkv

k ∈ �.

In less formal terms, the second of these properties says
that for a strongly perturbation resilient algorithm we have
that, for every problem and any non-negative real number ε,
if it is the case that for all initial points from � the infinite se-
quence produced by the algorithm contains an ε-compatible
point, then it will also be the case that all perturbed sequences
satisfying Eq. (6) contain an ε′-compatible point, for any
ε′ > ε.

Having defined the notion of a strongly perturbation re-
silient algorithm, we next show that this notion is of relevance
to problems in medical physics. We illustrate the use of this
in tomography in Sec. III. We first need to introduce some
mathematical concepts.

Given an algorithm P for a problem structure 〈T ,Pr〉 and
a T ∈ T , we say that P is convergent for T if, for every x ∈ �,
there exists a unique y(x) ∈ � such that, limk→∞(PT )k x
= y(x), meaning that for every positive real number δ, there
exists a non-negative integer K, such that ‖(PT )k x − y(x)‖
≤ δ, for all non-negative integers k ≥ K. If, in addition, there
exists a γ ∈ R+ such that PrT ( y(x)) ≤ γ , for every x ∈ �,
then we say that P is boundedly convergent for T.

A function f : � → R is uniformly continuous if, for ev-
ery ε > 0 there exists a δ > 0, such that, for all x, y ∈ �,
|f (x) − f ( y)| ≤ ε provided that ‖x − y‖ ≤ δ. An example
of a uniformly continuous function is ResS of Eq. (2), for
any S ∈ S. This can be proved by observing that the right-
hand side of Eq. (2) can be rewritten in vector/matrix form
as ‖b − Ax‖ and then selecting, for any given ε > 0, δ to be
ε/‖A‖, where ‖A‖ denotes the matrix norm of A.

An operator O: � → �, is nonexpansive if ‖Ox − O y‖
≤ ‖x − y‖, for all x, y ∈ �. An example of a nonexpansive
operator is the RS of Eq. (3). The proof of this is also sim-
ple. It follows from discussions regarding similar claims in
Ref. 27 that the BSw

: RJ → RJ of Eq. (4) is a nonexpan-
sive operator, for 1 ≤ w ≤ W, and that the operator Q of
Eq. (5) is also nonexpansive. Obviously, a sequential appli-
cation of nonexpansive operators results in a nonexpansive
operator and thus RS is nonexpansive.

Now we state an important new result that gives suffi-
cient conditions for strong perturbation resilience: If P is
an algorithm for a problem structure 〈T ,Pr〉 such that, for
all T ∈ T , P is boundedly convergent for T, PrT : � → R
is uniformly continuous, and PT : � → � is nonexpansive,
then P is strongly perturbation resilient. The importance of
this result lies in the fact that the rather ordinary condition of
uniform continuity for the proximity function and the reason-

able conditions of bounded convergence and nonexpansive-
ness of the algorithmic operators guarantee that we end up
with a strongly perturbation resilient algorithm. The proof of
this new result involves some mathematical technicalities and
is therefore presented in the Appendix as Theorem 1.

II.D. Optimization criterion and nonascending vector

Now suppose, as is indeed the case for the constrained
optimization problems discussed in Sec. I, that in addition
to a problem structure 〈T ,Pr〉 we are also provided with
an optimization criterion, which is specified by a function
φ : � → R, with the convention that a point in � for which
the value of φ is smaller is considered superior (from the point
of view of our application) to a point in � for which the value
of φ is larger. In the tomography context, any of the functions
of x that are listed as a “secondary optimization criterion” (an
alternative name is a “regularizer”) in Sec. 6.4 of Ref. 55 is an
acceptable choice for the optimization criterion φ. These in-
clude weighted norms, the negative of Shannon’s entropy and
total variation. It is the last of these that we discuss in detail in
the illustrative example below. The essential idea of the supe-
riorization methodology presented in this paper is to make use
of the perturbations of Eq. (6) to transform a strongly pertur-
bation resilient algorithm that seeks a constraints-compatible
solution into one whose outputs are equally good from the
point of view of constraints-compatibility, but are superior
according to the optimization criterion. We do this by pro-
ducing from the algorithm another one, called its superi-
orized version, by making sure not only that the βkv

k are
bounded perturbations, but also that φ(xk + βkv

k) ≤ φ(xk),
for all k ≥ 0.

In order to ensure this we introduce a new concept (closely
related to the concept of a “descent direction” that is widely
used in optimization). Given a function φ : � → R and a
point x ∈ �, we say that a vector d ∈ RJ is nonascending
for φ at x if ‖d‖ ≤ 1 and

there is a δ > 0 such that for all λ ∈ [0, δ],

(x + λd) ∈ � and φ(x + λd) ≤ φ(x).
(7)

Note that irrespective of the choices of φ and x, there is al-
ways at least one nonascending vector d for φ at x, namely, the
zero-vector, all of whose components are zero. This is a useful
fact for proving results concerning the guaranteed behavior of
our proposed procedures. However, in order to steer our algo-
rithms towards a point at which the value of φ is small, we
need to find a d such that φ(x + λd) < φ(x) rather than just
φ(x + λd) ≤ φ(x) as in Eq. (7). In some earlier papers on
superiorization27–31 it was assumed that � = RJ and that φ

is a convex function. This implied that, for any point x ∈ �,
φ had a subgradient g ∈ RJ at the point x. It was suggested
that if there is such a g with a positive norm, then d should
be chosen to be −g/‖g‖, otherwise d should be chosen to be
the zero vector. However, there are approaches (not involving
subgradients) to selecting an appropriate d; an example can be
found in Ref. 32 in which d is found without using subgradi-
ents for the case when φ is the �1-norm of the Haar transform.
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The method we used for selecting a nonascending vector in
the experiments reported in this paper is specified at the end
of Subsection III.A.

II.E. Superiorized version of an algorithm

We now make precise the ingredients needed for trans-
forming an algorithm into its superiorized version. Let � and
� be the underlying sets for a problem structure 〈T ,Pr〉
(� ⊆ � ⊆ RJ , as discussed at the beginning of Subsec-
tion II.B), P be an algorithm for 〈T ,Pr〉 and φ : � → R.
The following description of the Superiorized Version of
Algorithm P produces, for any problem T ∈ T , a sequence
RT = (xk)∞k=0 of points in � for which, for all k ≥ 0, Eq. (6)
is satisfied. We show this to be true, for any algorithm P, after
the description of the Superiorized Version of Algorithm P.
Furthermore, since the sequence RT is steered by Superiorized
Version of Algorithm P towards a reduced value of φ, there
is an intuitive expectation that the output of the superiorized
version is likely to be superior (from the point of view of
the optimization criterion φ) to the output of the original
unperturbed algorithm. This last statement is not precise and
so it cannot be proved in a mathematical sense for an arbitrary
algorithm P; however, that should not stop us from applying
the easy procedure given below for automatically producing
the superiorized version of P and experimentally checking
whether it indeed provides us with outputs superior to those
of the original algorithm. The well-demonstrated nature of
heuristic optimization approaches is that they often work in
practice even when their performance cannot be guaranteed
to be optimal.33–35

Nevertheless, we can push our theory further than the hope
expressed in the last paragraph, by considering superiorized
versions of algorithms that satisfy some condition. In this pa-
per, the condition that we discuss is strong perturbation re-
silience. We show below that if P is strongly perturbation
resilient, then, for any problem T ∈ T , a sequence RT pro-
duced by its superiorized version has the following desirable
property: For all ε ∈ R+, if O(T , ε, ((PT )k x)∞k=0) is defined
for every x ∈ �, then O(T, ε′, RT) is also defined for every
ε′ > ε; in other words, the Superiorized Version of Algorithm
P provides an ε′-compatible output. As stated above, the ad-
vantage of the superiorized version is that its output is likely
to be superior to the output of the original unperturbed al-
gorithm. We point out that strong perturbation resilience is a
sufficient, but not necessary, condition for guaranteeing such
desirable behavior of the superiorized version, finding addi-
tional sufficient conditions and proving that algorithms that
we wish to superiorize satisfy such conditions is part of our
ongoing research.

The superiorized version assumes that we have available
a summable sequence (γ�)∞�=0 of positive real numbers (for
example, γ � = a�, where 0 < a < 1) and it generates, simul-
taneously with the sequence (xk)∞k=0, sequences (vk)∞k=0, and
(βk)∞k=0. The latter is generated as a subsequence of (γ�)∞�=0,
resulting in a summable sequence (βk)∞k=0. The algorithm fur-
ther depends on a specified initial point x̄ ∈ � and on a posi-
tive integer N. It makes use of a logical variable called loop.

Superiorized Version of Algorithm P

(i) set k = 0
(ii) set xk = x̄
(iii) set � = −1
(iv) repeat
(v) set n = 0
(vi) set xk,n = xk

(vii) while n < N
(viii) set vk,n to be a nonascending vector for φ at

xk,n

(ix) set loop = true
(x) while loop
(xi) set � = � + 1
(xii) set βk, n = γ �

(xiii) set z = xk,n + βk,nv
k,n

(xiv) if z ∈ � and φ(z) ≤ φ(xk), then
(xv) set n = n + 1
(xvi) set xk,n = z
(xvii) set loop = false
(xviii) set xk+1 = PT xk,N

(xix) set k = k + 1.

Next we analyze the behavior of the Superiorized Version of
Algorithm P.

The iteration number k is set to 0 in (i) and xk = x0 is set
to its initial value x̄ in (ii). The integer index � for picking the
next element from the sequence (γ�)∞�=0 is initialized to −1
by line (iii), it is repeatedly increased by line (xi). The lines
(v)–(xix) that follow the repeat in (iv) perform a complete
iterative step from xk to xk+1, infinite repetitions of such steps
provide the sequence RT = (xk)∞k=0. During one iterative step,
there is one application of the operator PT , in line (xviii), but
there are N steering steps aimed at reducing the value of φ;
the latter are done by lines (v)–(xvii). These lines produce a
sequence of points xk,n, where 0 ≤ n ≤ N with xk,0 = xk ,
xk,n ∈ �, and φ(xk,n) ≤ φ(xk).

We prove the truth of the last sentence by induction on
the non-negative integers. For n = 0, we have by lines (v)
and (vi) that xk,0 = xk . But xk ∈ � , since it is either x̄ that
is assumed to be in � due to lines (i) and (ii) or it is in the
range � of PT due to lines (xviii) and (xix). Now we assume,
for any 0 ≤ n < N, that xk,n ∈ � and φ(xk,n) ≤ φ(xk) and
show that lines (viii)–(xvii) perform a computation that leads
from xk,n to an xk,n+1 ∈ � that satisfies φ(xk,n+1) ≤ φ(xk).
To see this, observe that line (viii) sets vk,n to be a nonascend-
ing vector for φ at xk,n, which implies that Eq. (7) is satis-
fied with x = xk,n and d = vk,n. Line (ix) sets loop to true,
and it remains true while searching for the desired xk,n+1,
by repeatedly executing the loop sequence that follows line
(x). In this sequence, line (xi) increases � by 1 and line (xii)
sets βk, n to γ �. Thus for the vector z defined by line (xiii),
z ∈ � and φ(z) ≤ φ(xk,n), provided that βk, n is not greater
than the δ in Eq. (7). Since (γ�)∞�=0 is a summable sequence
of positive real numbers, there must be a positive integer L
such that γ � ≤ δ, for all � ≥ L. This implies that if we ap-
plied lines (xi)–(xiii) often enough, we would reach a vector
z that satisfies z ∈ � and φ(z) ≤ φ(xk,n). If the condition in
line (xiv) is not satisfied when the process gets to it, then lines
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(xi)–(xiii) are again executed and eventually we get a vector
z for which the condition in line (xiv) is satisfied due to the
induction hypothesis that φ(xk,n) ≤ φ(xk). By lines (xv) and
(xvi) we see that at that time xk,n+1 is set to z and so we ob-
tain that xk,n+1 ∈ � and φ(xk,n+1) ≤ φ(xk), as desired. Line
(xvii) sets loop to false and so control is returned to line (vii).
When this happens for the Nth time, it will be the case that n
= N and, therefore, line (xviii) is used to produce xk+1 ∈ �

and the increasing of k by line (xix) allows us then to move
on to the next iterative step. Infinite repetition of such steps
produces the sequence RT = (xk)∞k=0 of points in �.

We now show that if O(T , ε, ((PT )k x)∞k=0) is defined for
every x ∈ �, then, for any ε′ > ε, the Superiorized Version
of Algorithm P produces an ε′-compatible output. Since P
is assumed to be strongly perturbation resilient, this desired
result follows if we can show that there exists a summable
sequence (βk)∞k=0 of non-negative real numbers and a bounded
sequence (vk)∞k=0 of vectors in RJ such that Eq. (6) is satisfied
for all k ≥ 0. In view of line (xviii), this is achieved if we can
define the βk and the vk so that xk,N = xk + βkv

k . This is
done by setting

βk = max{βk,n | 0 ≤ n < N}, (8)

vk =
N−1∑
n=0

βk,n

βk

vk,n. (9)

That these assignments result in xk,N = xk + βkv
k follows

from lines (v)–(xvii). From line (xii) follows that (βk)∞k=0 is
a subsequence of (γ�)∞�=0 and, hence, it is a summable se-
quence of non-negative real numbers. Since each ‖vk,n‖ ≤ 1
by the definition of a nonascending vector, it follows from
Eqs. (8) and (9) that ‖vk‖ ≤ N and so (vk)∞k=0 is bounded.
Part of the condition expressed in Eq. (6) is that, for all
k ≥ 0, xk + βkv

k ∈ �. This follows from the fact that
xk,N = xk + βkv

k is assigned its value by line (xvi), but only
if the condition expressed in line (xiv) is satisfied.

In conclusion, we have shown that the superiorized ver-
sion of a strongly perturbation resilient algorithm produces
outputs that are essentially as constraints-compatible as those
produced by the original version of the algorithm. However,
due to the repeated steering of the process by lines (vii)–(xvii)
towards reducing the value of the optimization criterion φ, we
can expect that the output of the superiorized version will be
superior (from the point of view of φ) to the output of the
original algorithm.

II.F. Information on performance comparison
with MAP methods

Using our notation, the constrained minimization formula-
tion that we are considering is as follows: Given an ε ∈ R+,

minimize φ(x), subject to PrT (x) ≤ ε. (10)

The aim of superiorization is not identical with the aim of
constrained minimization in Eq. (10). One difference is that ε

is not “given” in the superiorization context. The superioriza-
tion of an algorithm produces a sequence and, for any ε, the
associated output of the algorithm is considered to be the first
x in the sequence for which PrT (x) ≤ ε. The other difference
is that we do not claim that this output is a minimizer of φ

among all points that satisfy the constraint, but hope only that
it is usually an x for which φ(x) is at the small end of its range
of values over the set of constraint-satisfying points. This lat-
ter difference is generally shared by comparisons of a heuris-
tic approach with an exact approach to solving a constrained
minimization problem.

The MAP (or regularized) formulation of a physical prob-
lem that leads to the constrained minimization problem (10)
is the unconstrained minimization problem of the form: Given
a β ∈ R+,

minimize [φ(x) + βPrT (x)]. (11)

Formulations of both kinds [i.e., the ones of
Eqs. (10) and (11)] are widely used for solving medical
physics problems and the question “Which of these two for-
mulations leads to faster or better solutions of the underlying
physical problem?” is open. Examples of both formulations
with various choices for PrT and φ are listed in the beginning
parts of the paper of Goldstein and Osher.47

We now return to the question raised near the end of
Sec. I: Will superiorization produce superior results to those
produced by contemporary MAP methods or is it faster than
the better of such methods? As yet, there is very little informa-
tion available regarding this general question; in fact, we are
aware of only one published study.45 That study compared
a superiorization algorithm with the algorithm of Goldstein
and Osher that they refer to as TwIST (Ref. 46) with split
Bregman47 as the substep, which is indeed a contemporary
method that uses the MAP formulation. (For example, see the
discussion of the split Bregman method in Ref. 56.) The prob-
lem S to which the two algorithms were applied was one from
the tomographic problem set S defined in Eq. (1). ResS as de-
fined in Eq. (2) was used as the proximity function and total
variation, T V as defined below in Eq. (12), was the choice for
φ. It is reported in Ref. 45 that for the outputs of the two algo-
rithms that were being compared, the values of ResS and T V

were very similar, but the superiorization algorithm produced
its output four times faster than the MAP method.

III. AN ILLUSTRATIVE EXAMPLE

III.A. Application to tomography

We use tomography to refer to the process of reconstruct-
ing a function over a Euclidean space from estimated values
of its integrals along lines (that are usually, but not necessar-
ily, straight). The particular reconstruction processes to which
our discussion applies are the series expansion methods, see
Sec. 6.3 of Ref. 55, in which it is assumed that the function
to be reconstructed can be approximated by a linear combi-
nation of a finite number (say J) of basis functions and the
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reconstruction task becomes one of estimating the coeffi-
cients of the basis functions in the expansion. Sometimes,
prior knowledge about the nature of the function to be recon-
structed allows us to confine the sought-after vector x of coef-
ficients to a subset � of RJ (such as the non-negative orthant
RJ

+). We use i to index the lines along which we integrate,
ai ∈ RJ to denote the vector whose jth component is the in-
tegral of the jth basis function along the ith line, and bi to de-
note the measured integral of the function to be reconstructed
along the ith line. Under these circumstances the constraints
come from the desire that, for each of the lines, 〈ai , x〉 should
be close (in some sense) to bi.

To make this concrete, consider Eq. (1). Such a descrip-
tion of the constraints arises in tomography by grouping the
lines of integration into W blocks, with �w lines in the wth
block. Such groupings often (but not always) are done accord-
ing to some geometrical condition on the lines (for example,
in case of straight lines, we may decide that all the lines that
are parallel to each other form one block). In this framework,
the proximity function Res defined by Eq. (2) provides a rea-
sonable measure of the incompatibility of a vector x with the
constraints. The algorithm R described by Eqs. (3)–(5) is ap-
plicable to this concrete formulation.

There are many optimization criteria that have been used in
tomography, see Sec. 6.4 of Ref. 55, here we discuss the one
called T V , whose use has been popular in medical physics
recently, see as examples Refs. 20, 22, 23, and 41–44. The
definition of T V that we use here requires a certain way of
selecting the basis functions. It is assumed that the function to
be reconstructed is defined in the plane R2 and is zero-valued
outside a square-shaped region in the plane. This region is
subdivided into J smaller equal-sized squares (pixels) and the
J basis functions are defined by having value one in exactly
one pixel and value zero everywhere else. We index the pixels
by j and we let C denote the set of all indices of pixels that
are not in the rightmost column or the bottom row of the pixel
array. For any pixel with index j in C, let r(j) and b(j) be the
index of the pixel to its right and below it, respectively. We
define T V : RJ → R by

T V (x) =
∑
j∈C

√
(xj − xr(j ))2 + (xj − xb(j ))2. (12)

The method we adopted to generate a nonascending vector
for the T V function at an x ∈ RJ is based on Theorem 2 of
the Appendix. It is applicable since T V : RJ → R is a con-
vex function; see, for example, the end of the Proof of Propo-
sition 1 of Ref. 41. Now consider an integer j′ such that 1 ≤ j′

≤ J. Looking at the sum in Eq. (12), we see that xj ′ appears
in at most three terms, in which j′ must be either j, or r(j), or
b(j) for some j ∈ C. By taking the formal partial derivatives of
these three terms, we see that ∂T V

∂xj ′ (x) is well defined if the de-
nominator in the formal derivative of each of the three terms
is not zero for x. In view of this, we define the g in Theorem 2
as follows. If the denominator in any of the three formal par-
tial derivatives with respect to xj ′ has an absolute value less
than a very small positive number (we used 10−20), then we
set gj ′ to zero, otherwise we set it to ∂T V

∂xj ′ (x). Clearly, the re-

sulting g ∈ RJ satisfies the condition in Theorem 2 and hence
provides a d that is a nonascending vector for T V at x.

Previously reported reconstructions using T V -superior-
ization selected the d using subgradients as discussed in the
paragraph following Eq. (7); such a d is not guaranteed to
be a nonascending vector for the T V function. What we are
proposing here is not only mathematically rigorous (in the
sense that it is guaranteed to produce a nonascending vector
for the T V function), but it can also lead to a better recon-
structions, as illustrated in Subsection III.D.

III.B. The data generation for the experiments

The datasets used in the experiments reported in this
paper were generated in such a way that they share the
noise-characteristics of CT scanners when used for scanning
the human head and brain; as discussed, for example, in
Chap. 5 of Ref. 55. They were generated using the software
SNARK09.57

The head phantom that was used for data generation is
based on an actual cross section of the human head. It is de-
scribed as a collection of geometrical objects (such as ellipses,
triangles, and segments of circles) whose combination accu-
rately resembles the anatomical features of the actual head
cross section. In addition, the basic phantom contains a large
tumor. The actual phantom used was obtained by a random
variation of the basic phantom, by incorporating into it lo-
cal inhomogeneities and small low-contrast tumors at ran-
dom locations. This phantom is represented by the image in
Fig. 1(a). That image comprises 485 × 485 pixels each of size
0.376 mm by 0.376 mm. The values assigned to the pixels are
obtained by an 11 × 11 subsampling of the pixels and aver-
aging the values assigned to the subsamples by the geomet-
rical objects that are used to describe the anatomical features
and the tumors. Those values are approximate linear atten-
uation coefficients per cm at 60 keV (0.416 for bone, 0.210
for brain, 0.207 for cerebrospinal fluid). The contrast of the
small tumors with their background is 0.003 cm–1. In order
to clearly see the low-contrast details in the interior of the
skull, we use zero (black) to represent the value 0.204 (or any-
thing less) and 255 (white) to represent 0.21675 or anything
more). The same is true for all the images in the rest of this
paper.

For the selected head phantom we generated parallel
projection data, in which one view comprises estimates of
integrals through the phantom for a set of 693 equally spaced
parallel lines with a spacing of 0.0376 cm between them. (We
chose to simulate parallel rather than divergent projection
data, since the reconstruction by the method of Ref. 42 with
which we wish to compare the superiorization approach was
performed for us by the authors of Ref. 42 on parallel data.
Even though contemporary CT scanners use divergent pro-
jection data, results obtained by the use of parallel projection
data are relevant to them, since it is known that the quality of
reconstructions from these two modes of data collection are
very similar as long as the data generations use similar fre-
quencies of sampling of lines and similar noise characteristics
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FIG. 1. (a) A head phantom. (b) Reconstruction of the head phantom from realistically simulated projection data for 360 views using ART with blob basis
functions.

in the estimated integrals for those lines; see, for example, the
reconstructions from divergent and parallel projection data in
Fig. 5.15 of Ref. 55.) In calculating these estimates. we take
into consideration the effects of photon statistics, detector
width, and scatter. Details of how we do this exactly can be
found in Secs. 5.5 and 5.9 of Ref. 55. Briefly, quantum noise
is calculated based on the assumption that approximately
2 000 000 photons enter the head along each ray, detector
width is simulated by using 11 subrays along each of
which the attenuation is calculated independently and then
combined at the detector, and 5% of the photons get counted
not by the detector for the ray in question but detectors for
the neighboring rays. For the experiments in this paper, we
did not simulate the polyenergetic nature of the x-ray source.

To indicate what can be achieved in clinical CT, we show in
Fig. 1(b) a reconstruction that was made from data comprising
of 360 such views with the reconstruction algorithm known
as ART with blob basis functions; see Chap. 11 of Ref. 55.

III.C. Superiorization reconstruction from a few views

The main reason in the literature for advocating the use of
T V as the optimization criterion is that by doing so one can
achieve efficacious reconstructions even from sparsely sam-
pled data. In our own work31 with realistically simulated CT
data, we found that this is not always the case and this will be
demonstrated again by the experiments reported in the current
paper.

FIG. 2. Reconstructions using T V as the optimization criterion from realistically simulated projection data for 60 views using (a) ASD-POCS and (b) supe-
riorization. As compared to Fig. 1(b), these reconstructions fail in two ways: they do not show some of the fine details in the phantom and they present some
artifactual variations. The former of these is a consequence of reconstructing from a much smaller dataset than used for Fig. 1(b). The latter is due to using a
very narrow window (13.5 HU) in these displays. Were we to use a wider display window (e.g., from –429 HU to 429 HU) for the reconstructions in this figure
and in Fig. 1(b), the visual appearance of the resulting images would be nearly indistinguishable.
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There have appeared in the literature some approaches to
T V minimization that seem to indicate a more efficacious per-
formance for CT than the one reported in Ref. 31. One of
these is the adaptive steepest descent projections onto convex
sets (ASD-POCS) algorithm, which is described in detail in
the much-cited paper of Sidky and Pan42 and whose use has
been since reported in a number of subsequent publications,
for example, in Refs. 23 and 43. We note that ASD-POCS
was designed with the aim of producing an exact minimiza-
tion algorithm, in contrast to our heuristic superiorization ap-
proach. Translating Eqs. (6)–(8) of Ref. 42 into our termi-
nology, the aim of ASD-POCS is the following: Given an
ε ∈ R+, find an ε-compatible x ∈ � = RJ

+ for which T V (x)
is minimal. [Note that this aim is a special case of the con-
strained optimization formulation presented in Eq. (10).] In
order to test ASD-POCS, we generated realistic projection
data as described in Subsection III.B but for only 60 views
at 3◦ increments with the spacing between the lines for which
integrals are estimated set at 0.752 mm. Thus the number of
rays (and hence the number photons put into the head) in this
dataset is a 12th of what it is in the dataset used to produce
the reconstruction in Fig. 1(b). A reconstruction from these
data was produced for us using ASD-POCS by the authors of
Ref. 42 (this ensured that it does not suffer due to our misinter-
pretation of the algorithm or from our inappropriate choices
of the free parameters), it is shown in Fig. 2(a).

Since the image quality of Fig. 2(a) is not anywhere near
to that of Fig. 1(b), we present here a brief discussion as to
why we are showing such images. Many publications in the
recent medical imaging literature have claimed that medically
efficacious reconstructions can be obtained by the use of T V -
minimization from data as sparse as what was used to produce
Fig. 2(a). (In fact, ASD-POCS was motivated and used with
such an aim in mind.23, 42, 43) Such publications usually show
reconstructions from sparse data as evidence for the validity
of their claims. They can do this because in their presented
illustrations the features that are observable in the reconstruc-
tions are usually much larger and/or of much higher contrast
against their backgrounds than the small “tumors” in Fig. 1(a),
which are perfectly visible in the reconstruction in Fig. 1(b),
but are not detectable in the reconstruction from sparse data
in Fig. 2(a). The reason why that reconstruction appears to be
unacceptably bad is that the display window (from 0.204 cm–1

linear attenuation coefficient to 0.21675 cm–1 linear attenua-
tion coefficient) is very narrow; it was selected to enhance
the visibility of the small low-contrast tumors. The width of
this window corresponds to about 13.5 Hounsfield units (HU).
As compared to this, in their evaluation of sparse-view recon-
struction from flat-panel-detector cone-beam CT, Bian et al.43

use what they call a “soft-tissue grayscale window” (also a
“narrow window”) from –429 HU to 429 HU to display head
phantom reconstructions. Using such a window for our re-
constructions shown Figs. 2(a) and 1(b) would result in im-
ages that are nearly indistinguishable from each other. Thus
reporting the images using such a display window is consis-
tent with the claim that a TV-minimizing reconstruction from
a few views is similar in quality to a more traditional recon-
struction from many views. However, our much narrower dis-

play window reveals that this is not really so. We therefore
continue using our much narrower window in what follows,
since it clearly reveals the nature of the reconstructions being
compared, warts and all.

While this ASD-POCS reconstruction is not as good as it
should be for diagnostic CT of the brain (due to the sparsity
of the data), it is visually better than the reconstruction using
superiorization from similar data as reported in Ref. 31. We
discuss the reasons for this in Subsection III.D. Here, we con-
centrate on examining whether one can achieve a reconstruc-
tion using superiorization that is as good as that produced by
ASD-POCS from the same data.

For this we first need to examine the numerical properties
of the ASD-POCS reconstruction. This reconstruction uses
485 × 485 pixels each of size 0.376 mm by 0.376 mm. This
implies that J = 235,225 and it also determines the compo-
nents of the vectors ai ∈ RJ in the precise specification of
the problem S. The ResS, as defined by Eq. (2), of the ASD-
POCS reconstruction is 0.33 and the T V , as defined by Eq.
(12), is 835.

We applied to the same problem S a superiorized version
of the algorithm R defined by Eq. (3). To complete the spec-
ification of R, we point out that for the ordering of views we
chose the “efficient” one that was introduced in Ref. 58 and
is also discussed on p. 209 of Ref. 55. The choices we made
for the superiorization are the following: γ � = 0.99995�, x̄
is the zero vector, and N = 20. The nonascending vector was
computed by the method described in the paragraph below
[Eq. (12)]. Denoting by RS the infinite sequence of points in
� that is produced by the superiorized version of the algo-
rithm R when applied to the problem S, we chose as our re-
construction x∗ = O(S, 0.33, RS). For such a reconstruction
we have, by the definition of O, that ResS(x∗) ≤ 0.33; in other
words, the output of the superiorization algorithm is at least
as constraints-compatible with S as the output of ASD-POCS.
From the point of view of T V -minimization, our x∗ is slightly
better: T V (x∗) = 826.

The superiorization reconstruction is displayed in
Fig. 2(b). Visually, it is similar to the reconstruction produced
by ASD-POCS. From the optimization point of view it
achieves the desired aim better than ASD-POCS does, since
it results in smaller values for both ResS and for T V , even
though only slightly.

That the two reconstructions in Fig. 2 are very similar is
not surprising because a comparison of the pseudocodes re-
veals that the ASD-POCS algorithm in Ref. 42 is essentially a
special case of the Superiorized Version of Algorithm P, even
though it has been derived from rather different principles. To
obtain the ASD-POCS algorithm from our methodology de-
scribed here, we would have to choose ART (see Chap. 11
of Ref. 55) as the algorithm that we are superiorizing. Such
a superiorization of ART was reported in the earliest paper
on superiorization.27 For the illustration in our current paper,
we decided to superiorize the block-iterative algorithm R de-
fined by Eq. (3). This illustrates the generality of the superi-
orization approach: it is applicable not only to a large class
of constrained optimization problems, but also enables the
use of any of a large class of iterative algorithms designed to
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produce a constraints-compatible solutions. A recent publica-
tion aimed at producing an exact T V -minimizing algorithm
based on the block-iterative approach is Ref. 44.

III.D. Effects of variations in the reconstruction
approach

The reconstruction in Fig. 2(a) produced by ASD-POCS
definitely “looks better” than a reconstruction in Ref. 31,
which was obtained using superiorization from similar data.
Since, as discussed in the last paragraph of Subsection III.C,
the ASD-POCS algorithm in Ref. 42 can be obtained as a spe-
cial case of superiorization, it must be that some of the choices
made in the details of the implementations are responsible for
the visual differences. An analysis of the implementational
details adopted by the two approaches revealed several differ-
ences. After removing these differences, the superiorization
approach produced the image in Fig. 2(b), which is very sim-
ilar to the reconstruction produced by ASD-POCS. We now
list the implementational choices that were made for superi-
orization to make its performance match that of the reported
implementation of ASD-POCS.

One implementational difference is in the stopping-rule of
the iterative algorithm; that is, the choice of ε in determin-
ing the output O(S, ε, RS). Since the data are noisy, the phan-
tom itself does not match the data exactly. In previously re-
ported implementations of superiorization it was assumed that
the iterative process should terminate when an image is ob-
tained that is approximately as constraints-compatible as the
phantom; in the case of the phantom and the projections data
on which we report here the value of ResS for the phantom
is approximately 0.91, which is larger than its value (0.33)
for the reconstruction produced by ASD-POCS. The output
O(S, 0.91, RS) is shown in Fig. 3(a). This is a wonderfully
smooth reconstruction, its T V value is only 771. However,
this smoothness comes at a price: we lose not only the abil-
ity to detect the large tumor, but we cannot even see anatomic
features (such as the ventricular cavities) inside the brain. So
it appears that, in order to see medically relevant features in
the brain, overfitting (in the sense of producing a reconstruc-
tion from noisy data that is more constraints-compatible than
the phantom) is desirable.

In the implementations that produced previously reported
reconstructions by superiorization, the number N in the Supe-
riorized Version of Algorithm P was always chosen to be 1.
It is possible that this is the wrong choice, making only this
change to what lead to the reconstruction in Fig. 2(b) results
in the reconstruction shown in Fig. 3(b). That image appears
similar to the image in Fig. 2(b), but it has a higher T V value,
namely, 832, which is still very slightly lower than that of the
ASD-POCS reconstruction. The choice N = 20 was based on
the desire to maintain consistency with what has been prac-
ticed using ASD-POCS, see p. 4790 of Ref. 42. It appears that
in the context of our paper the additional computing cost due
to choosing N to be 20 rather than 1 is not really justified. (We
note that if d is selected using subgradients as discussed in the
paragraph following Eq. (7) and thus d is not guaranteed to be
a nonascending vector for the T V function, then the choice of

20 rather than 1 for N results in a considerable improvement.
However, an even greater improvement is achieved even with
N = 1 by selecting d as recommended in this paper.)

Another important difference between the ASD-POCS im-
plementation and the previous implementations of the superi-
orization approach is the size of the pixels in the reconstruc-
tions. For the ASD-POCS reconstruction this was selected to
be 0.376 mm by 0.376 mm. In previously reported reconstruc-
tions by superiorization it was assumed that the edge of a
pixel should be the same as the distance between the paral-
lel lines along which the data are collected; that is, 0.752 mm
for our problem S. This assumption proved to be false. T V -
minimization takes care of undesirable artifacts that may oth-
erwise arise due to the smaller pixels and this leads to a visual
improvement. A superiorizing reconstruction with the larger
pixels, using ε = 0.33 and N = 20, is shown in Fig. 3(c).
(We note that the use of smaller pixels during iterative x-ray
CT reconstructions was also suggested in Ref. 59. However,
that approach is quite different from what is presented here:
its final result uses larger pixels whose values are obtained by
averaging assemblies of values provided by the iterative pro-
cess to the smaller pixels. There is no such downsampling in
our approach, our final result is presented using the smaller
pixels. Its smoothness is due to reduction of TV by the supe-
riorization approach rather than to averaging pixel values in a
denser digitization.)

Combining the use of the larger pixels with ε = 0.91 and
N = 1 results in the reconstruction shown in Fig. 3(d). This
reconstruction, for which the superiorization options were se-
lected according to what was done in Ref. 31, is visually
inferior to those shown in our Fig. 2. The reconstructions
displayed in Fig. 3 also illustrate another important point,
namely, that even though the mathematical results discussed
in this paper are valid for a large range of choices of the pa-
rameters in the superiorization algorithms, for medical effi-
cacy of the reconstructions attention has to be paid to these
choices since they can have a drastic effect on the quality of
the reconstruction.

It has been mentioned in Subsection II.B that except for
the presence of Q in Eq. (3), which enforces non-negativity
of the components, R is identical to the algorithm used and
illustrated in Ref. 31. It is known that CT reconstruction of
the brain from many views does not suffer from ignoring
the fact that the components of the x, which represent linear
attenuation coefficients, should be non-negative; as is illus-
trated in Fig. 1(b). This remains so when reconstructing from
a few views using the method and data that we have been dis-
cussing: if we do everything in exactly the same way as was
done to obtain the reconstruction with T V value 826 that is
shown in our Fig. 2(b) but remove Q from Eq. (3), then we
obtain a reconstruction in Fig. 4(a) whose T V value is 829.

Another variation that deserves discussion, because it has
been suggested in the literature,22 is one that does not come
about by making choices for the general approach of the Su-
periorized Version of Algorithm P but rather by changing the
nature of the approach. The variation in question is not appli-
cable in general, but can be applied to the special case when
the algorithm to be superiorized is the R defined by Eq. (3). It
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FIG. 3. Reconstructions produced by varying some of the parameters in the algorithm that produced Fig. 2(b). (a) Changing the termination criterion form
ε = 0.33 to ε = 0.91. (b) Changing the value of N from 20 to 1. (c) Reconstructing with pixel size 0.752 mm by 0.752 mm instead of 0.376 mm by 0.376 mm.
(d) Reconstructing with all the three changes of (a)–(c).

FIG. 4. Reconstructions by variations that do not fit into the framework within which the previously shown reconstructions were produced. (a) Not using
non-negativity in the algorithm. (b) Interleaving perturbations with blocks.

Medical Physics, Vol. 39, No. 9, September 2012



5544 Herman et al.: Superiorization: An optimization heuristic for medical physics 5544

was suggested as an improvement to the approach presented
above with the choice N = 1. The idea was based on recog-
nizing the block-iterative nature of the algorithmic operator
RS in Eq. (3) and intermingling the perturbation steps of lines
(vii)–(xvii) of the Superiorized Version of Algorithm R with
the projection steps BS1 , . . . , BSW

of Eq. (3). It was reported
in Ref. 22 that doing this is advantageous to using the Supe-
riorized Version of Algorithm R. However, when we applied
the variation of the Superiorized Version of Algorithm R that
is proposed in Ref. 22 to the problem S that we have been
using in this section, we ended up with the reconstruction in
Fig. 4(b) whose T V value is 920. This is not as good as what
was obtained using the version of the algorithm that produced
the reconstruction in Fig. 2(b). We conclude that the variation
suggested by Ref. 22, which does not fit into the theory of our
paper, does not have an advantage over what we are proposing
here, at least for the problem S that we have been discussing in
this section. We conjecture that the improvement reported in
Ref. 22 is due to selecting d using subgradients as discussed
in the paragraph following Eq. (7) and, as discussed earlier,
such an improvement is not obtained if d is selected by the
more appropriate method recommended in this paper.

IV. DISCUSSION AND CONCLUSIONS

Constrained optimization is an often-used tool in medical
physics. The methodology of superiorization is a heuristic (as
opposed to exact) approach to constrained optimization.

Although the idea of superiorization was introduced in
2007 and its practical use has been demonstrated in several
publications since, this paper is the first to provide a solid
mathematical foundation to superiorization as applied to the
noisy problems of the real world. These foundations include a
precise definition of constraints-compatibility, the concept of
a strongly perturbation resilient algorithm, simple conditions
that ensure that an algorithm is strongly perturbation resilient,
the superiorized version of an algorithm and the showing that
the superiorized version of a strongly perturbation resilient
algorithm produces outputs that are essentially as constraints-
compatible as those produced by the original version but are
likely to have a smaller value of the chosen optimization cri-
terion.

The approach is very general. For any iterative algorithm
P and for any optimization criterion φ for which we know
how to produce nonascending vectors, the pseudocode given
in Subsection II.E automatically provides the version of P that
is superiorized for φ.

We demonstrated superiorization for tomography when to-
tal variation is used as the optimization criterion. In particu-
lar, we illustrated on a particular tomography problem that, in
spite of its generality, superiorization produced a reconstruc-
tion that is as good as (from the points of view of constraints-
compatibility and T V -minimization) what was obtained by
the ASD-POCS algorithm that was specially designed for
T V -minimization in tomography.
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APPENDIX: MATHEMATICAL PROOFS

1. Conditions for strong perturbation resilience

Theorem 1. Let P be an algorithm for a problem structure
〈T ,Pr〉 such that, for all T ∈ T , P is boundedly convergent
for T, PrT : � → R is uniformly continuous, and PT : �

→ � is nonexpansive. Then P is strongly perturbation re-
silient.

Proof. We first show that there exists an ε ∈ R+ such
that O(T , ε, ((PT )k x)∞k=0) is defined for every x ∈ �. Un-
der the assumptions of the theorem, let γ ∈ R+ be such
that PrT ( y(x)) ≤ γ , for every x ∈ �. We prove that
O(T , 2γ, ((PT )k x)∞k=0) is defined for every x ∈ � as follows.
Select a particular x ∈ �. By uniform continuity of PrT ,
there exists a δ > 0, such that |PrT (z) − PrT ( y(x))| ≤ γ ,
for any z ∈ � for which ‖z − y(x)‖ ≤ δ. Since P is conver-
gent for T, there exists a non-negative integer K, such that
‖(PT )K x − y(x)‖ ≤ δ. It follows that

|PrT ((PT )K x)| ≤ |PrT ((PT )K x) −PrT ( y(x))| + |PrT ( y(x))|
≤ 2γ. (A1)

Now let T ∈ T and ε ∈ R+ be such that O(T , ε,

((PT )k x)∞k=0) is defined for every x ∈ �. To prove the theo-
rem, we need to show that O(T, ε′, R) is defined for every ε′

> ε and for every sequence R = (xk)∞k=0 of points in � for
which, for all k ≥ 0, Eq. (6) is satisfied for bounded perturba-
tions βkv

k . Let ε′ and R satisfy the conditions of the previous
sentence.

For k ≥ 0, we have, due to the nonexpansiveness of PT ,
that

‖xk+1 − PT xk‖ = ‖PT (xk + βkv
k) − PT xk‖ ≤ ‖βkv

k‖.
(A2)

Denote ‖βkv
k‖ by rk. Clearly, rk ∈ R+ and it follows from the

definition of bounded perturbations that
∑∞

k=0
rk < ∞.

We next prove by induction that, for every pair of non-
negative integers k and i,

‖xk+i − (PT )i xk‖ ≤
k+i−1∑
j=k

rj . (A3)
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Let k be an arbitrary non-negative integer. If i = 0, then
the value is zero on both sides of the inequality and hence
Eq. (A3) holds. Now assume that Eq. (A3) holds for an integer
i ≥ 0. Then, by Eq. (A2) and the nonexpansiveness of PT ,

‖xk+i+1 − (PT )i+1xk‖ ≤ ‖xk+i+1 − PT xk+i‖
+‖PT xk+i − (PT )i+1xk‖

≤ rk+i + ‖xk+i − (PT )i xk‖

≤ rk+i +
k+i−1∑
j=k

rj

=
k+i∑
j=k

rj , (A4)

which completes our inductive proof. A consequence of
Eq. (A3) is that, for every pair of non-negative integers k and
i,

‖xk+i − (PT )i xk‖ ≤
∞∑

j=k

rj . (A5)

Due to the summability of the non-negative sequence
(rk)∞k=0, the right-hand side (and hence the left-hand side) of
this inequality gets arbitrarily close to zero as k increases.

Since PrT is uniformly continuous, there exists a δ

such that, for all x, y ∈ �, |PrT (x) − PrT ( y)| ≤ ε′ − ε pro-
vided that ‖x − y‖ ≤ δ. Select a k so that

∑∞
j=k rj ≤ δ. By

the assumption that O(T , ε, ((PT )k x)∞k=0) is defined for ev-
ery x ∈ �, there exists a non-negative integer i for which
Pr((PT )i xk) ≤ ε. From Eq. (A5) we have, for this k and i,
that ‖xk+i − (PT )i xk‖ ≤ δ and, hence,

|PrT (xk+i)| ≤ |PrT (xk+i) − PrT ((PT )i xk)|
+|PrT ((PT )i xk)|

≤ (ε′ − ε) + ε = ε′, (A6)

proving that O(T, ε′, R) is defined. �

2. Nonascending vectors for convex functions

Theorem 2: Let φ : RJ → R be a convex function and let
x ∈ RJ . Let g ∈ RJ satisfy the property: For 1 ≤ j ≤ J, if the
jth component gj of g is not zero, then the partial derivative
∂φ

∂xj
(x) of φ at x exists and its value is gj. Define d to be the

zero vector if ‖g‖ = 0 and to be −g/‖g‖ otherwise. Then d
is a nonascending vector for φ at x.

Proof: The theorem is trivially true if ‖g‖ = 0, so we as-
sume that this is not the case. We denote by I the nonempty
set of those indices j for which gj �= 0.

For 1 ≤ j ≤ J, let sj be gj/|gj| for j ∈ I and be 0 otherwise,
and let ej ∈ RJ be the vector all of whose components are
zero except for the jth, which is one. Then, for 1 ≤ j ≤ J,
there exists a δj > 0 such that, for 0 ≤ λj ≤ δj,

φ(x − λj sj ej ) ≤ φ(x). (A7)

This is obvious if sj = 0. Otherwise, ∂φ

∂xj
(x) exists and in-

dicates φ increases at x if sj = 1 or that φ decreases at x if sj

= −1. The existence of the desired δj can be derived from the
standard definition of the partial derivative as a limit.

We define δ > 0 by

δ = ‖g‖
J

min
j∈I

{
δj

|gj |
}

. (A8)

Then we have that, for 0 ≤ λ ≤ δ,

φ (x + λd) = φ

⎛
⎝x − λ

J∑
j=1

|gj |
‖g‖ sj ej

⎞
⎠

= φ

⎛
⎝ J∑

j=1

1

J

(
x − λJ

|gj |
‖g‖ sj ej

)⎞
⎠

≤ 1

J

J∑
j=1

φ

(
x − λJ

|gj |
‖g‖ sj ej

)

≤ 1

J

J∑
j=1

φ(x)

= φ(x). (A9)

The first inequality above follows from the convexity of φ

and the second one follows from Eq. (A7), with λj defined to
be λJ

|gj |
‖g‖ , combined with Eq. (A8). Thus d is a nonascending

vector for φ at x. �
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Abstract The projected subgradient method for constrained minimization repeat-

edly interlaces subgradient steps for objective function descent with projections onto

the feasible region, which is the intersection of closed convex constraints sets, to regain

feasibility. The latter pose a computational di�culty and therefore the projected sub-

gradient method is applicable only when the feasible region is �simple to project onto�.

In contrast with this, in the superiorization methodology a feasibility-seeking algorithm

leads the overall process and objective function descent steps are interlaced into it. This

makes a di�erence because the feasibility-seeking algorithm employs projections onto

the individual constraints sets and not onto the whole feasible region.

We present the two approaches side-by-side and demonstrate their performance on

a problem of computerized tomography image reconstruction posed as a constrained

minimization problem aiming at �nding a constraint-compatible solution that has a

reduced value of the total variation of the reconstructed image.

Keywords constrained minimization, feasibility-seeking, bounded convergence,

superiorization, projected subgradient method, proximity function, strong perturbation

resilience, image reconstruction, computerized tomography
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1 Introduction

Our aim in this paper is to expose the recently-developed superiorization methodol-

ogy (SM) and its ideas to the optimization community by �confronting� it with the

projected subgradient method (PSM). The reasons for this choice are explained below.

Throughout this paper we assume that Ω is a nonempty subset of the J-dimensional
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Euclidean space RJ . We consider constrained minimization problems of the form

minimize {φ(x) | x ∈ C} , (1)

where φ : RJ → R is an objective function and C ⊆ Ω is a given feasible set. Such

nonlinear constrained optimization problems lie at the heart of optimization theory

and practice and constitute mathematical models for many scienti�c and real-world

applications. Various theories and di�erent methods abound for ful�lling the task of

�nding a point that is both feasible for the constraints and renders a minimal value

to the objective function. Some approaches, known as regularization methods, fold the

feasibility-seeking part of the overall task into the minimization via penalty functions.

Others assume a feasible point as a starting point and conduct the search for minimality

while preventing the iterates of an algorithm from leaving the constraints by using

barrier functions. Still others deal with feasibility-seeking and the search for minimality

as two separate tasks, see, e.g., [19].

In this paper we juxtapose the projected subgradient method (PSM) [sometimes

referred to also as the (sub)gradient projection method ] with the recently-developed

superiorization methodology (SM) and demonstrate their performance on a large-size

real-world application that is modeled, and needs to be solved, as a constrained min-

imization problem. It is not claimed that PSM is the best optimization method for

solving (1) and there are many di�erent alternative methods to which SM could be

compared. So why did we chose to confront PSM with our SM? In a nutshell, our

answer is that both methods interlace objective-function-reduction steps with steps

oriented toward feasibility, but they di�er in how they restore or preserve feasibility.

We now outline these two methods and explain our choice in more detail.

The PSM for constrained minimization has been extensively investigated, see, e.g.,

[41, Subsection 7.1.2], [27, Subsection 3.2.3]. Its roots are in the work of Shor [42] for

the unconstrained case and in the work of Polyak [38,39] for the constrained case. More

recent work can be found in, e.g., [5]. In order to apply the PSM to solving (1) we need

to assume that C is a nonempty closed convex set and that φ is a convex function.

PSM generates a sequence of iterates
n
xk
o∞
k=0

according to the recursion formula

xk+1 = PC

“
xk − tkφ′

“
xk
””

, (2)

where tk > 0 is a step-size, φ′
“
xk
”
∈ ∂φ

“
xk
”

is a subgradient of φ at xk, and

PC stands for the orthogonal (least Euclidean norm) projection onto the set C. The

underlying philosophy is to perform unconstrained objective function descent steps via

qk := xk − tkφ′
“
xk
”
and regain feasibility with respect to C after each such step by

projecting qk onto C. Many published studies give various sets of conditions under

which sequences generated by an algorithm that includes an iterative step like (2)

converge or have certain other desirable properties and a great deal of experimental

work has been done and published about applying such methods computationally.

A major di�culty with (2) is the need to perform, within each iterative step,

the orthogonal projection. If the feasible set C is not �simple to project onto� then

the projection requires an independent inner-loop calculation to minimize the distance

from the point qk to the set C, which can be costly and hamper the overall e�ectiveness

of an algorithm that uses (2). Also, if the inner loop converges to the projection onto

C only in the limit, then in practical implementations it will have to be stopped after
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a �nite number of steps and so xk+1 will be only an approximation to the projection

onto C and it could even happen that it is not in C.

Even if we set aside our worries about projecting onto C in (2), there are still two

concerns when applying PSM to real-world problems. One is that the iterative process

usually converges to the desired solution only in the limit. In practice, some stopping

rule is applied to terminate the process and the output at that time may not even be

in C and, even if it is in C, it is most unlikely to be the minimizer of φ over C. The

second problem in real-world applications comes from the fact that the constraints,

derived from the real-world problem, may not be consistent (e.g., because they come

from noisy measurements) and so C is empty.

Both of these objections can be handled by replacing the notion of a �xed feasible

set C by that of a nonnegative real-valued proximity function ProxC : Ω → R+. This

function serves as an indicator of how incompatible a vector x is with the constraints.

In such a formulation the merit of the actual output x of any algorithm is indicated

by the smallness of the two numbers ProxC(x) and φ(x). For the formulation of (1),

we would de�ne ProxC so that its range is the ray of nonnegative real numbers with

ProxC(x) = 0 if, and only if, x ∈ C and then the constrained minimization problem (1)

is precisely that of �nding an x that is a minimizer of φ(x) over {x | ProxC(x) = 0}.
The above discussion allows us to do away with the nonemptiness assumption and also

to compare the merits of actual outputs of algorithms that only approximate the aim

of the constrained minimization problem.

The recently invented SM incorporates the ideas of the previous paragraph in its

very foundation and formulates the problem with the function ProxC instead of the

set C. The underlying idea of SM is that many iterative algorithms that produce

outputs x for which ProxC(x) is small are strongly perturbation resilient in the sense

that, even if certain kinds of changes are made at the end of each iterative step,

the algorithm still produces an output x′ for which ProxC(x′) is not larger. This

property is exploited by using permitted changes to steer the algorithm to an output

that has not only a small ProxC value, but has also a small φ value. The algorithm

that incorporates such a steering process is referred to as the superiorized version of the

original iterative algorithm. The main practical contribution of SM is the automatic

creation of the superiorized version, according to a given objective function φ, of just

about any iterative algorithm that aims at producing an x for which ProxC(x) is small.

Nevertheless, in order to carry out our comparative study, we restrict our atten-

tion here to a subset of all possible problems to which not only SM but also PSM is

applicable. We assume that we are given a family of constraints {C`}L`=1, where each

set C` is a nonempty closed convex subset of RJ such that

C =
L\
`=1

C` (3)

is a nonempty subset of Ω and that it is the feasible set C of (1). Under these as-

sumptions, we illustrate the SM by the superiorization of feasibility-seeking projection

methods, see, e.g., [1,2,3,9,15] and the recent monograph [8]. Such methods use pro-

jections onto the individual sets C` in order to generate a sequence
n
xk
o∞
k=0

that

converges to a point x∗ ∈ C. Therefore, contrary to the PSM method, one does not

need to assume that C is a �simple to project onto� set, but rather that the individual

sets C` have this property. The latter is indeed often the case, such as, for example,
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when the sets C` are hyperplanes or half-spaces onto which we can project easily, but

their intersection is not �simple to project onto�.

The SM is accurately presented below in Section 4. But the discussion above is suf-

�cient to explain why we chose the PSM method and the SM for our comparative study.

Namely, both methods interlace objective-function-reduction steps with steps oriented

toward feasibility. But exactly here lies a big di�erence between the two approaches.

The PSM method requires that feasibility is regained after subgradient nonascent steps

by performing a projection onto C, whereas in the SM the feasibility-seeking projection

method proceeds by projecting (in a well-de�ned algorithmically-structured regime dic-

tated by the speci�c projection method) onto the individual sets Ci and not onto the

whole feasible set C. This has a potentially great computational advantage.

In this paper we demonstrate the approaches of SM and PSM on a realistically-

large-size problem with data that arise from the signi�cant problem of x-ray computed

tomography (CT) with total variation (TV) minimization. In Section 2 we discuss

some related work, in Section 3 we describe the PSM method that we use, in Section

4 the SM is presented, and in Section 5 the computational demonstration is reported,

followed by some conclusions in Section 6.

2 Related previous work

In this section we brie�y describe the relationships of superiorization with previously

published work on related methods. The points made in the second half of Subsection

2.2 are of particular importance.

2.1 Previous work on superiorization

The superiorization methodology was �rst proposed (although without using the term

superiorization) in [7]. In that work perturbation resilience (without using this term)

was proved for the general class of string-averaging projection (SAP) methods, see

[11,12,13,14,36], that use orthogonal projections and relate to consistent constraints.

Subsequent investigations and developments were done in [10,17,21,31,37]. In [10] the

methodology was formulated over general problem structures which enabled rigorous

analysis and revealed that the approach is not limited to feasibility and optimization.

In [17] perturbation resilience was analyzed for the class of block-iterative projection

(BIP) methods, see [1,2,3,9,15], and applied in this manner. In [21] the advantages

of superiorization for image reconstruction from a small number of projections was

studied, and in [31] two acceleration schemes based on (symmetric and nonsymmetric)

BIP methods were proposed and experimented with. In [37] total variation superi-

orization schemes in proton computed tomography (pCT) image reconstruction were

investigated.

In [22] we introduced the notion of ε-compatibility into the superiorization ap-

proach in order to handle inconsistent constraints. This enabled us to close the logical

discrepancy between the assumption of consistency of constraints and the actual ex-

perimental work done previously. We also introduced there the new notion of strong

perturbation resilience which generalizes the previously used notion of perturbation

resilience. Algorithmically, the new superiorized algorithm introduced there (and used
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here) is di�erent from all previous ones in that it uses the notion of nonascending di-

rection and in that it allows several perturbation steps for each feasibility-seeking step,

an aspect that has practical advantages.

In [23] superiorization was applied to the expectation maximization (EM) algorithm

instead of the feasibility-seeking projection methods that were used in superiorization

previously. The approach was implemented there to solve an inverse problem of bio-

luminescence tomography (BLT) image reconstruction. Such EM superiorization was

investigated further and applied to a problem of Single Photon Emission Computed

Tomography (SPECT) in [25]. Most recently, the SM was further investigated numeri-

cally, along with many projection methods for the feasibility problem and for the best

approximation problem, in [4].

2.2 The works of of Nurminski, of Helou Neto and De Pierro, and of Nedi¢

Our superiorization methodology should be distinguished from the works of Helou Neto

and De Pierro [30,29], of Nedi¢ [40,26], and of Nurminski [33,32,34,35]. The lack of

cross-referencing between some of these papers shows that, in spite of the similarities

between their approaches, their results were apparently reached independently.

Nurminski: The algorithms of Nurminski use Fejér operators, that can be used in

feasibility-seeking, and introduces into them disturbances with diminishing step-sizes

λk → 0 as k → ∞, where the rate of this tendency is such that
P∞
k=0 λk = +∞.

Under these conditions and a variety of additional assumptions, Nurminski showed

asymptotic convergence of the iterates generated by his algorithms to a minimum

point of the constrained minimization problem.

Helou Neto and De Pierro: The framework proposed by Helou Neto and De

Pierro uses interlacing of �feasibility operators� with �optimality operators� with the

aim of creating exact constrained minimization algorithms. Similarly to Nurminski,

they employ diminishing step-sizes λk → 0 as k → ∞ such that
P∞
k=0 λk = +∞.

Under these conditions and a variety of additional assumptions, di�erent than those

of Nurminski, they show asymptotic convergence of the iterates generated by their

algorithmic framework to a minimum point of the constrained minimization problem.

However, when it comes to derivation of speci�c algorithms from the general frame-

work of [29, Equation (3)], their feasibility operator F invariably takes the form

FF (x) = x− µ(x)∇F (x), (4)

where the function F (x), whose gradient is calculated, is �a convex function such that

the set of minima of this function coincides with the set X [in [29, Equation (3)] X is the

feasible set of the minimization problem and should be identi�ed with C =
TL
`=1 C` in

our notation] when it is not empty and de�nes a solution in an appropriate way (least

squares for example) otherwise� and µ(x) are some parameters that are restricted in

a particular manner as in [29, Lemma 7 or Corollary 8]. This function F (x) may be

identi�ed with what we call the proximity function ProxC(x) in the superiorization

methodology, but our feasibility-seeking algorithms, and hence their versions produced

by our superiorization methodology, are not limited to the form of (4).

Nedi¢: The overall approach of Nedi¢ is to apply gradient and subgradient itera-

tive methods for the objective function minimization and interlace into them random

feasibility updates. Her resulting �random projection method� [26, Equation (4)] bears

structural similarity to our SM but again the diminishing step-sizes αk → 0 as k →∞
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in [26, Equation (4)] must be such that
P∞
k=0 αk = +∞, see [26, Proposirion 1 and

Proposition 2]. The randomness refers to the way the constraints are picked up for the

feasibility updates.

To summarize, there are various di�erences among all the above works and between

them and our work, di�erences in overall setup of the problems, di�erences in the

assumptions used for the various convergence results, etc. This is not the place for a

full review of all these di�erences. But we wish to clarify the fundamental di�erence

between them and the SM. The point is that when two activities are interlaced (here,

feasibility steps and objective function reduction steps) then once the process is running

all such methods look similar. From looking at the iterative formulas one cannot tell

if (a) �feasibility steps are interlaced into an iterative gradient scheme for objective

function minimization� or if (b) �objective function reduction steps are interlaced into

an iterative projections scheme for feasibility-seeking�.

The common thread of all above mentioned works is that they fall into the category

(a), while the SM is of the kind (b). In all methods of category (a) the condition that is

needed to guarantee convergence to a constrained minimum point is that the diminish-

ing step-sizes αk → 0 as k →∞ must be such that
P∞
k=0 αk = +∞. In contrast, since

the feasibility-seeking projection method is the �leader� of the overall process in the

SM, we must have that the perturbations (that do the objective function reduction) will

use diminishing step-sizes βk → 0 as k →∞ but such that
P∞
k=0 βk <∞. The latter

condition guarantees the perturbation resilience of the original feasibility-seeking pro-

jection method so that, regardless of the interlaced objective function reduction steps,

the overall process converges to a feasible, or ε-compatible, point of the constraints.

Yet another fundamental di�erence between the superiorization methodology and

the algorithms of category (a) mentioned above is that those algorithms perform the

interlaced objective function descent and feasibility steps alternatingly according to a

rigid predetermined scheme, whereas in the superiorization methodology the activation

of these steps and the decisions whether to keep an iterate or discard it are done

inside the superiorized algorithm in a controlled and automatically-supervised manner.

Thus, the superiorization methodology has the following features not present in the

algorithms of category (a) mentioned above: (i) it conducts iterations of a feasibility-

seeking projection method which is strongly perturbation resilient (as de�ned below),

(ii) it interlaces objective function nonascent steps into the process in a controlled and

automatically-supervised manner, (iii) it is not known to guarantee convergence to a

solution of the constrained minimization problem and it might (we do not know if

this is so or not) instead, only be shown to lead to a feasible point whose objective

function value is less than that of a feasible point that would have been reached by the

same feasibility-seeking projection method without the perturbations exercised by the

superiorized algorithm.

2.3 Adaptive steepest descent projections onto convex sets

The adaptive steepest descent projections onto convex sets (ASD-POCS) algorithm is

described in detail in [44] and its use has since been reported in a number of subsequent

publications (for example, in [43]) in the CT literature. It interlaces function descent

steps with projections onto convex sets. However, it is not as general as the SM; see

[22] for a comparison.
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3 The projected subgradient method

In this section we describe the projected subgradient method (PSM) and how we apply

it. We follow the presentation given in [27, Subsection 3.2.3], using, in particular,

Theorem 3.2.2 therein. This convergence theorem requires convexity and local Lipschitz

continuity of the objective function φ and that the feasible set C in (1) is closed and

convex. The latter is indeed the case here since we assume that the feasible set C is

given by (3), with all the conditions stated there. The PSM generates a sequence of

iterates
n
xk
o∞
k=0

according to the recursion formula

xk+1 = PC

“
xk − tkφ′

“
xk
””

, (5)

where tk > 0 is a step-size, φ′
“
xk
”
∈ ∂φ

“
xk
”
is a subgradient of φ at xk, and PC

stands for the orthogonal projection onto the set C. The PSM has been investigated

under several types of step-size rules. Some commonly used such rules can be found,

e.g., in [6]. We adopt a nonsummable diminishing step-length rule of the form tk =

γk/
‚‚‚φ′ “xk”‚‚‚, where γk ≥ 0, limk→∞ γk = 0,

P∞
k=0 γk = ∞. All the above is

precisely identical with the method in [27, Equation (3.2.8)] and under these conditions

[27, Theorem 3.2.2] guarantees convergence of
n
φ
“
xk
”o
∞
k=0 to a minimum value of φ

over C.

The next issue that we discuss is how to compute the projection PC which

is required in the PSM (5). To do this, one has to solve the optimization problem of

�nding

arg min
x

(
1

2
‖x− q‖2 | x ∈ C =

L\
`=1

C`

)
, (6)

for q = xk − tkφ
′
“
xk
”
that has been calculated. We adopt the well-trodden path

of solving (6) via duality theory. We introduce new vector variables y` ∈ RJ , for all
` = 1, 2, . . . , L, and rewrite the problem (6) as the equivalent one of �nding8>><>>:

arg min
x,y1,y2,...,yL

PL
`=1

1
2

‚‚‚y` − q‚‚‚2 + 1
2 ‖x− q‖

2 ,

such that y` = x, ` = 1, 2, . . . , L

and y` ∈ C`, i = 1, 2, . . . , L.

(7)

By assigning dual vectors λ` ∈ RJ , ` = 1, 2, . . . , L, to every equality constraint in (7)

we obtain the dual function

D
“
λ1, λ2, . . . , λL

”
:=
PL
`=1 min


1
2

‚‚‚y` − q‚‚‚2 +
D
λ`, y`

E
| y` ∈ C`

ff
+ min

n
1
2 ‖x− q‖

2 −
DPL

`=1 λ
`, x
E
| x ∈ RJ

o
.

(8)

Some rearrangements of terms then lead to

D
“
λ1, λ2, . . . , λL

”
=
PL
`=1 min


1
2

‚‚‚y` − “q − λ`”‚‚‚2 − 1
2

‚‚‚q − λ`‚‚‚2 | y` ∈ C`ff
+ min

n
1
2 ‖x− q‖

2 −
DPL

`=1 λ
`, x
E
| x ∈ RJ

o
.

(9)
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By solving the minimization problems on the right-hand side of the above equation we

obtain

D
“
λ1, λ2, . . . , λL

”
=
PL
`=1

„
1
2

‚‚‚“q − λ`”− PC`

“
q − λ`

”‚‚‚2 − 1
2

‚‚‚q − λ`‚‚‚2«
− 1

2

‚‚‚PL
`=1 λ

`
‚‚‚2 − DPL

`=1 λ
`, q
E
.

(10)

It can be shown that this function is concave and has a Lipschitz continuous gradient.

When the projections onto each C` are available, then the values and gradients of this

dual function D are also available. Thus, the dual problem is the convex unconstrained

optimization problem of �nding

arg max
λ1,λ2,...,λL

n
D
“
λ1, λ2, . . . , λL

”
| λ` ∈ RJ , ` = 1, 2, . . . , L

o
, (11)

where the objective function D
“
λ1, λ2, . . . , λL

”
is concave and smooth, and its values

and gradients are available at any point
“
λ1, λ2, . . . , λL

”
. The optimal point x∗ of the

primal problem (7) is then given by

x∗ = q +
LX
`=1

λ∗`, (12)

where
“
λ∗1, λ∗2, . . . , λ∗L

”
is an optimal point of the dual problem (11).

A possible drawback of this approach via duality theory is that by introducing new

variables in (7) we increase the number of variables in the dual problem. It turns out

that in some special cases of the problem (6) we can e�ciently solve the corresponding

dual problem without enlarging its size. One of these special cases occurs when in

problem (6) L = I + 1, the sets Ci :=
n
x ∈ RJ |

D
ai, x

E
= bi

o
, for i = 1, 2, . . . , I, are

hyperplanes where the vector ai is, for i = 1, 2, . . . , I, the ith row of the matrix A,

b = (b1, b2, . . . , bI), and CI+1 :=
n
x ∈ RJ | 0 ≤ x ≤ 1

o
is an additional convex set of

box constraints; that is, the problem (6) takes the form of �nding

arg min
x


1

2
‖x− q‖2 | Ax = b and 0 ≤ x ≤ 1

ff
. (13)

In this case, we use a dual vector λ ∈ RI and the dual problem becomes that of �nding

arg max
λ

8><>:
1
2

‚‚‚q −ATλ− PCI+1

“
q −ATλ

”‚‚‚2
−1

2

‚‚‚q −ATλ‚‚‚2 − 〈λ, b〉+ 1
2 ‖q‖

2 | λ ∈ RI

9>=>; , (14)

where PCI+1 denotes the orthogonal projection onto the set CI+1. The optimal point

x∗ of the problem (13) can be computed by

x∗ = PCI+1

“
q −ATλ∗

”
, (15)

where the vector λ∗ is the optimal solution of the dual problem (14). It can be shown

that the objective function D(λ) of this dual problem (14) is convex with Lipschitz

continuous gradients given by

∇D(λ) = APCI+1

“
q −ATλ

”
− b. (16)



Projected subgradient minimization versus superiorization 9

The problem (14) can be solved by the optimal method of Nesterov [28]. We give its

description for the problem of unconstrained minimization of a function f(x), assuming

that f(x) is convex and continuously di�erentiable with Lipschitz continuous gradients;
i.e., that there exists a constant L > 0 such that, for all x, y ∈ RJ ,

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ . (17)

Nesterov's Algorithm

(N1) Initialization: Select a point y0 ∈ RJ and put k = 0, β0 = 1, x−1 =
y0, α−1 =

‚‚y0 − z‚‚ / ‚‚∇f `y0´−∇f (z)
‚‚ , where z is any point in RJ such that

z 6= y0 and ∇f (z) 6= ∇f
`
y0
´
.

(N2) Iterative Step: Given xk−1, yk, αk−1 and βk
(N2.1) Calculate the smallest index s ≥ 0 for which the following inequality holds

f
“
yk
”
− f

“
yk − 2−sαk−1∇f

“
yk
””
≥ 2−s−1αk−1

‚‚‚∇f “yk”‚‚‚2 . (18)

(N2.2) Calculate the next iterate by

αk = 2−sαk−1 and xk = yk − αk∇f
“
yk
”
, (19)

and update

βk+1 =

„
1 +

1

2

q
4β2
k + 1

«
, (20)

and

yk+1 = xk +
βk − 1

βk+1

“
xk − xk−1

”
. (21)

When a stopping rule applies, then the point xk is the output of the method.

4 The superiorization methodology

In this section we present a restricted version of the SM of [22] adapted to our problem

(1). As discussed in Section 1, we associate with the feasible set C in (1) a proximity

function ProxC : Ω → R+ that is an indicator of how incompatible an x ∈ Ω is

with the constraints. For any given ε > 0, a point x ∈ Ω for which ProxC(x) ≤ ε is

called an ε-compatible solution for C. We further assume that we have, for the C in

(1), a feasibility-seeking algorithmic operator AC : RJ → Ω, with which we de�ne the

following basic algorithm.

The Basic Algorithm

(B1) Initialization: Choose an arbitrary x0 ∈ Ω,
(B2) Iterative Step: Given the current iterate xk, calculate the next iterate xk+1 by

xk+1 = AC

“
xk
”
. (22)

The following de�nition helps to evaluate the output of the Basic Algorithm upon

termination by a stopping rule.
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De�nition 1 The ε-output of a sequence

Given C ⊆ RJ , a proximity function ProxC : Ω → R+, a sequence
n
xk
o∞
k=0
⊂ Ω

and an ε > 0, then an element xK of the sequence which has the properties: (i)

ProxC

“
xK
”
≤ ε, and (ii) ProxC

“
xk
”
> ε for all 0 ≤ k < K, is called an ε-output

of the sequence

n
xk
o∞
k=0

with respect to the pair (C, ProxC). We denote it

by O
“
C, ε,

n
xk
o∞
k=0

”
= xK .

Clearly, an ε-output O
“
C, ε,

n
xk
o∞
k=0

”
of a sequence

n
xk
o∞
k=0

might or might

not exist, but if it does, then it is unique. If
n
xk
o∞
k=0

is produced by an algorithm

intended for the feasible set C, such as the Basic Algorithm, without a termination

criterion, then O
“
C, ε,

n
xk
o∞
k=0

”
is the output produced by that algorithm when it

includes the termination rule to stop when an ε-compatible solution for C is reached.

De�nition 2 Strong perturbation resilience

Assume that we are given a C ⊆ Ω, a proximity function ProxC , an algorithmic

operator AC and an x0 ∈ Ω. We use
n
xk
o∞
k=0

to denote the sequence generated by

the Basic Algorithm when it is initialized by x0. The Basic Algorithm is said to be

strongly perturbation resilient if the following hold:

(i) there exist an ε > 0 such that the ε-output O
“
C, ε,

n
xk
o∞
k=0

”
is de�ned for

every x0 ∈ Ω;
(ii) for every ε > 0, for which the ε-output O

“
C, ε,

n
xk
o∞
k=0

”
is de�ned for every

x0 ∈ Ω, we have also that the ε′-output O
“
C, ε′,

n
yk
o∞
k=0

”
is de�ned for every ε′ > ε

and for every sequence
n
yk
o∞
k=0

generated by

yk+1 = AC

“
yk + βkv

k
”
, for all k ≥ 0, (23)

where the vector sequence
n
vk
o∞
k=0

is bounded and the scalars {βk}∞k=0 are such that

βk ≥ 0, for all k ≥ 0, and
P∞
k=0 βk <∞.

De�nition 3 Bounded convergence

Assume that we are given a C ⊆ RJ , a proximity function ProxC and an algorith-

mic operator AC : RJ → Ω. Then the Basic Algorithm is said to be convergent over

Ω if for every x0 ∈ Ω there exist the limit limk→∞ xk = y
`
x0
´
and y

`
x0
´
∈ Ω. It

is said to be boundedly convergent over Ω if, in addition, there exists a γ ≥ 0 such

that ProxC
`
y
`
x0
´´
≤ γ for every x0 ∈ Ω.

The next theorem, which gives su�cient conditions for strong perturbation re-

silience of the Basic Algorithm, has been proved in [22, Theorem 1] (in di�erent word-

ing).

Theorem 1 Assume that we are given a C ⊆ RJ , a proximity function ProxC and an

algorithmic operator AC : RJ → Ω. If AC is nonexpansive and is such that it de�nes a

boundedly convergent Basic Algorithm and if the proximity function ProxC is uniformly

continuous, then the Basic Algorithm de�ned by AC is strongly perturbation resilient.
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Along with the C ⊆ RJ , we look at the objective function φ : RJ → R, with the

convention that a point in RJ for which the value of φ is smaller is considered superior

to a point in RJ for which the value of φ is larger. The essential idea of the Superior-

ization Methodology (SM) is to make use of the perturbations of (23) to transform a

strongly perturbation resilient algorithm that seeks a constraints-compatible solution

for C into one whose outputs are equally good from the point of view of constraints-

compatibility, but are superior (not necessarily optimal) according to the objective

function φ.

This is done by producing from the Basic Algorithm another algorithm, called its

superiorized version, that makes sure not only that the βkv
k are bounded perturba-

tions, but also that φ
“
yk + βkv

k
”
≤ φ

“
yk
”
, for all k ≥ 0. To do so, we use the next

concept, closely related to the concept of �descent direction�.

De�nition 4 Given a function φ : RJ → R and a point y ∈ RJ , we say that a vector

d ∈ RJ is nonascending for φ at y if ‖d‖ ≤ 1 and there is a δ > 0 such that

for all λ ∈ [0, δ] we have φ (y + λd) ≤ φ (y) . (24)

Obviously, the zero vector is always such a vector, but for superiorization to work

we need a sharp inequality to occur in (24) frequently enough.

The Superiorized Version of the Basic Algorithm assumes that we have available

a summable sequence {η`}∞`=0 of positive real numbers (for example, η` = a`, where

0 < a < 1) and it generates, simultaneously with the sequence
n
yk
o∞
k=0

inΩ, sequencesn
vk
o∞
k=0

and {βk}∞k=0. The latter is generated as a subsequence of {η`}∞`=0, resulting

in a nonnegative summable sequence {βk}∞k=0. The algorithm further depends on a

speci�ed initial point y0 ∈ Ω and on a positive integer N . It makes use of a logical

variable called loop. The superiorized algorithm is presented next by its pseudo-code.

Superiorized Version of the Basic Algorithm

1. set k = 0
2. set yk = y0

3. set ` = −1
4. repeat

5. set n = 0
6. set yk,n = yk

7. while n<N

8. set vk,n to be a nonascending vector for φ at yk,n

9. set loop=true

10. while loop

11. set ` = `+ 1
12. set βk,n = η`
13. set z = yk,n + βk,nv

k,n

14. if φ (z)≤φ
“
yk
”
then

15. set n=n+ 1
16. set yk,n=z
17. set loop = false

18. set yk+1=AC

“
yk,N

”
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19. set k = k + 1

According to the analysis of the behavior of this algorithm in [22], the algo-

rithm produces a sequence
n
yk
o∞
k=0

for which (23) is satis�ed. Further, the follow-

ing important fact is shown to be true in [22]: If, for a given ε > 0, the ε-output

O
“
C, ε,

n
xk
o∞
k=0

”
of the Basic Algorithm is de�ned for every x0 ∈ Ω, then every se-

quence
n
yk
o∞
k=0

generated by the Superiorized Version of the Basic Algorithm has an

ε′-output O
“
C, ε′,

n
yk
o∞
k=0

”
for every ε′ > ε. In other words, the Superiorized Version

produces outputs that are essentially as constraints-compatible as those produced by

the original (not superiorized) algorithm. However, due to the repeated steering of the

process by lines 7 to 17 toward reducing the value of the objective function φ, we can

expect that the output of the Superiorized Version will be superior (from the point of

view of φ) to the output of the original algorithm.

5 A computational demonstration

5.1 The x-ray CT problem

The fully-discretized model in the series expansion approach to the image reconstruc-

tion problem of x-ray computerized tomography (CT) is formulated in the following

manner. A Cartesian grid of square picture elements, called pixels, is introduced into

the region of interest so that it covers the whole picture that has to be reconstructed.

The pixels are numbered in some agreed manner, say from 1 (top left corner pixel) to

J (bottom right corner pixel).

The x-ray attenuation function is assumed to take a constant value xj throughout

the jth pixel, for j = 1, 2, ..., J . Sources and detectors are assumed to be points and the

rays between them are assumed to be lines. Further, assume that the length of intersec-

tion of the ith ray with the jth pixel, denoted by aij , for i = 1, 2, ..., I, j = 1, 2, ..., J ,
represents the weight of the contribution of the jth pixel to the total attenuation along

the ith ray.

The physical measurement of the total attenuation along the ith ray, denoted by

bi, represents the line integral of the unknown attenuation function along the path of

the ray. Therefore, in this fully-discretized model, the line integral turns out to be a

�nite sum and the model is described by a system of linear equations

JX
j=1

xja
i
j = bi, i = 1, 2, . . . , I. (25)

In matrix notation we rewrite (25) as

Ax = b, (26)

where b ∈ RI is the measurement vector, x ∈ RJ is the image vector, and the I × J
matrix A =

“
aij

”
is the projection matrix. See [20], especially Section 6.3, for a complete

treatment of this subject.
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5.2 The algorithms that we use

In this section we describe the PSM and SM algorithms speci�cally used in our demon-

stration. We applied both algorithms to solve the fully-discretized model in the series

expansion approach to the image reconstruction problem of x-ray CT, formulated in

the previous subsection and represented by the optimization problem

minimize {φ(x) | Ax = b and 0 ≤ x ≤ 1} . (27)

The box constraints are natural for this problem: If xj represents the linear atten-

uation coe�cient, measured in cm-1, at a medically-used x-ray energy spectrum in the

jth pixel, then the box constraints 0 ≤ x ≤ 1 are reasonable for tissues in the human

body; see Table 4.1 of [20]. Hence, for the image reconstruction problem of x-ray CT,

we de�ne Ω by

Ω =
n
x ∈ RJ | 0 ≤ x ≤ 1

o
. (28)

We note that this Ω is bounded.

The choice of C in (1) is of the type speci�ed in (3), with L = I + 1, Ci =n
x ∈ RJ |

D
ai, x

E
= bi

o
, for i = 1, 2, . . . , I and CI+1 = Ω. Note that these are exactly

the conditions that were used to derive in Section 3 the special case of the PSM

expressed in (13) and the equations that follow it. Furthermore, since in the experiment

reported below, we start with a speci�c image vector x ∈ Ω and calculate from it the

measurement vector b ∈ RI using (25), we know that C is a nonempty subset of Ω,

which is the requirement stated below (3).

For any such C, we de�ne ProxC : Ω → R+ by

ProxC(x) =

vuut IX
i=1

bi − 〈ai, x〉
2
. (29)

Note that this proximity function ProxC is uniformly continuous and thus satis�es the

condition stated for it in Theorem 1.

Our choice for the objective function φ is the total variation (TV) of the image

vector x. Denoting the G × H image array X (GH = J) obtained from the image

vector x by Xg,h = x(g−1)H+h, for 1 ≤ g ≤ G and 1 ≤ h ≤ H, we use

φ (x) = TV(X) =
G−1X
g=1

H−1X
h=1

q`
Xg+1,h −Xg,h

´2
+
`
Xg,h+1 −Xg,h

´2
. (30)

5.2.1 Projected Subgradient Method (PSM)

As mentioned at the beginning of Section 3, according to [27, Theorem 3.2.2], we need

to verify convexity and local Lipschitz continuity of the objective function in (30).

Convexity of the TV objective function follows, for example, from the end of the Proof

of Proposition 1 in [16]. The Lipschitz continuity is not di�cult to prove as the next

proposition shows.

Proposition 1 The total variation function (30) is Lipschitz continuous on the whole

space RJ .
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Proof Each summand in (30) can be written asq`
Xg+1,h −Xg,h

´2
+
`
Xg,h+1 −Xg,h

´2
=
‚‚Ag,hX‚‚2 , (31)

where Ag,h is a square matrix having only two nonzero rows, with the �rst nonzero

row containing only two nonzero elements 1 and −1 that correspond to the variables

Xg+1,h andXg,h, respectively, and the second nonzero row containing only two nonzero

elements 1 and −1 that correspond to the variables Xg,h+1 Xg,h, respectively. Thus,

the TV function can be rewritten as

TV (X) =
G−1X
g=1

H−1X
h=1

‚‚Ag,hX‚‚2 , (32)

allowing us to estimate the Lipschitz constant as follows:

|TV (X)− TV (Y )| =

˛̨̨̨
˛̨G−1X
g=1

H−1X
h=1

‚‚Ag,hX‚‚2 − ‚‚Ag,hY ‚‚2
˛̨̨̨
˛̨

≤
G−1X
g=1

H−1X
h=1

˛̨‚‚Ag,hX‚‚2 − ‚‚Ag,hY ‚‚2 ˛̨ ≤ G−1X
g=1

H−1X
h=1

‚‚Ag,hX −Ag,hY ‚‚2
=
G−1X
g=1

H−1X
h=1

‚‚Ag,h (X − Y )
‚‚
2
≤
G−1X
g=1

H−1X
h=1

‚‚Ag,h‚‚2 ‖X − Y ‖2 ,
where ‖A‖2 =

p
λmax (ATA) with λmax denoting the maximal eigenvalue. Thus we

have shown

|TV (X)− TV (Y )| ≤ L ‖X − Y ‖2 , (33)

with L =
PG−1
g=1

PH−1
h=1

‚‚Ag,h‚‚2.
We note that the function f(x) = 1

2

‚‚‚x− qk‚‚‚ 2 is convex, continuously di�eren-

tiable, and ful�lls (17) with L = 1. The algorithm that we use to realize the PSM is

as follows.

The PSM Algorithm

(P1) Initialization: Select a point x0 ∈ RJ , select integers K and M , use two real

number variables curr and prev, and set curr = φ
`
x0
´
and prev = curr.

(P2) Iterative step: Given the current iterate xk, calculate the next iterate xk+1 as

follows:

(P2.1) Calculate a subgradient of φ at xk, i.e., φ′
“
xk
”
∈ ∂φ

“
xk
”
, a step-size tk =

k−1/4/
‚‚‚φ′ “xk”‚‚‚ 2 and the vector

qk = xk − tkφ′
“
xk
”
. (34)

(P2.2) Apply Nesterov's Algorithm to solve the problem

minimize


1

2

‚‚‚x− qk‚‚‚ 2 | Ax = b and 0 ≤ x ≤ 1

ff
. (35)
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(P2.3) Update to �nd the next iterate

xk+1 = arg min
x


1

2

‚‚‚x− qk‚‚‚ 2 | Ax = b and 0 ≤ x ≤ 1

ff
. (36)

(P2.4) If φ
“
xk+1

”
≤ curr then curr = φ

“
xk+1

”
.

(P3) Stopping rule: If kmodK = 0 (i.e., k is divisible by K), then:

If prev − curr < prev /M then stop. Otherwise, prev = curr and go to (2).

In step (P2.2) above, problem (35) is solved as follows. From a given problem (35)

pass to its dual

maximize
n
f(λ) | λ ∈ RI

o
, (37)

where

f(λ) = 1
2

‚‚‚qk −ATλ− PCI+1

“
qk −ATλ

”‚‚‚2 − 1
2

‚‚‚qk −ATλ‚‚‚2
− 〈λ, b〉+ 1

2

‚‚‚qk‚‚‚2 (38)

and PCI+1 denotes the orthogonal projection onto the set
n
x ∈ RJ | 0 ≤ x ≤ 1

o
. De-

note by λ∗k the optimal solution of problem (37). Then the optimal point x∗k of the

problem (35) is given by

x∗k = PCI+1

“
qk −ATλ∗k

”
. (39)

We apply Nesterov's Algorithm for �nding an optimal solution λ∗k of the problem (37).

In the reported experiments we used the starting points x0 and y0 in the PSM

Algorithm and in Nesterov's Algorithm, respectively, to be zero vectors. In the ini-

tialization step of the PSM Algorithm we selected K = 10 and M = 5000. In the

initialization step of Nesterov's Algorithm we chose α−1 = 10.

5.2.2 Superiorization Method (SM)

Our selected choice for the operator AC in the Basic Algorithm as well as in the

Superiorized Version of the Basic Algorithm, as described in Section 4, is based on

an algebraic reconstruction technique (ART), see [20, Chapter 11]. Speci�cally, for

i = 1, 2, . . . , I, we de�ne the operators Ui : RJ → RJ by

Ui(x) = x+
bi −

D
ai, x

E
‖ai‖2

ai. (40)

De�ning Q : RJ → Ω by

(Q(x))j =

8<:
xj , if 0 ≤ xj ≤ 1,
0, if xj < 0,
1, if 1 < xj ,

(41)

for j = 1, 2, ..., J , we specify the algorithmic operator AC : Ω → Ω by

AC (x) = QUI · · ·U2U1(x). (42)
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Since the individual Uis as well as the Q are clearly nonexpansive operators, the same

is true for AC .

By well-known properties of ART (see, for example, Sections 11.2 and 15.8 of

[20]), the Basic Algorithm with this algorithmic operator is convergent over Ω and,

in fact, for every x0 ∈ Ω, the limit y
`
x0
´
is in C. It follows that, for every x0 ∈ Ω,

ProxC
`
y
`
x0
´´

= 0 and so the Basic Algorithm is boundedly convergent. According to

Theorem 1, this combined with the facts that AC is nonexpansive and the proximity

function ProxC is uniformly continuous, implies that the Basic Algorithm de�ned by

AC is strongly perturbation resilient.

Recalling the discussion just below the description of the Superiorized Version of

the Basic Algorithm, we make further use of the convergence of the Basic algorithm

to an element of C as follows. Since for all ε > 0, the ε-output O
“
C, ε,

n
xk
o∞
k=0

”
of the Basic Algorithm is de�ned for every x0 ∈ Ω, we also have that every sequencen
yk
o∞
k=0

generated by the Superiorized Version of the Basic Algorithm has an ε′-

output O
“
C, ε′,

n
yk
o∞
k=0

”
for every ε′ > 0. This means that for the speci�c type of C

that is used in our comparative study, the Superiorized Version of the Basic Algorithm

is guaranteed to produce an ε′-compatible output for any ε′ > 0 and any initial point

y0 ∈ Ω.
The speci�c choices made when running the Superiorized Version of the Basic Al-

gorithm for our comparative study were the following. We selected η` = 0.999`, y0

to be the zero vector and N = 9. All these choices we made are based on auxiliary

experiments (not included in this paper) that helped determine optimal parameters

for the data-set discussed in Subsection 5.3. In addition, we need to specify how the

nonascending vector was selected in line 8 of the Superiorized Version of the Basic algo-

rithm. This was done by the method speci�ed in [22], Section III.A following equation

(12).

5.3 The computational result

The computational work reported here was done on a single machine using a single

CPU, an Intel i5-3570K 3.4 Ghz with 16 GB RAM using the SNARK09 software pack-

age [18,24]; the phantom, the data, the reconstructions and displays were all generated

within this same framework. In particular, this implies that di�erences in the reported

reconstruction times are not due to the di�erent algorithms being implemented in

di�erent environments.

Figure 1 shows the phantom used in our study, which is a 485×485 digitized image.

The phantom corresponds to a cross-section of a human head (based on [20, Figure

4.6]). It is represented by a vector with 235, 225 components, each standing for the

average x-ray attenuation coe�cient within a pixel. Each pixel is of size 0.376× 0.376
mm2. The values of the components are in the range of [0, 0.6241749], however the
display range used here was much smaller [0.204, 0.21675]. The mapping between the

two ranges is such that any value below 0.204 is shown as black and any value above

0.21675 is shown as white with a linear mapping in-between. We used this display

window for all images presented here.

Data were collected by calculating line integrals through the digitized head phantom

in Figure 1 using 60 sets of equally rotated (in 3 degrees increments) parallel lines, with
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Fig. 1: The head phantom. The value of its TV is 984. Its tomographic data was obtained for
60 views.

lines in each set spaced at 0.752 mm from each other. Each line integral gives rise to

a linear equation and represents a hyperplane in RJ . The phantom itself lies in the

intersection of all the hyperplanes that are associated with these lines and it also

satis�es the box constraints in (28) The total number of linear equations is 18, 524,
making our problem underdetermined with 235, 225 unknowns (the intersection of all

the hyperplanes is an at least in a 216, 701-dimensional subspace of R235,225). In the

comparative study, we �rst applied the PSM and then the SM to these data as follows.

The PSM was implemented as described in Subsection 5.2.1. In particular, it started

with x0 = 0 (the zero vector all of whose components are 0), for which ProxC
`
x0
´

=
326. It was stopped according to the Stopping Rule (P3), with K = 10 andM = 5000.
The iteration number at that time was 815 and the value of the proximity function

was ProxC
`
x815

´
= 0.0422, which is very much smaller than the value at the initial

point. The length of computer time required was 2217 seconds. The TV of the output

was 919, which is less than that of the phantom, indicating that PSM is performing

its task of producing a constraints-compatible output with a low TV. This output is

shown in Figure 2(a).

We used the Superiorized Version of the Basic Algorithm, as described in Subsection

5.2.2 to generate a sequence
n
yk
o∞
k=0

until it reached O
“
C, 0.0422,

n
yk
o∞
k=0

”
and

considered that to be the output of SM. We know that this output must exist for our

problem and that its constraints-compatibility will not be greater than that of the

output of PSM. The length of computer time required to obtain this output was 102

seconds, which is over twenty times shorter than what was needed by PSM to get its
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(a)

(b)

Fig. 2: Reconstructions of the head phantom of Figure 1. (a) The image reconstructed by the
PSM has TV = 919 and was obtained after 2217 seconds. (b) The image reconstructed by the
SM has TV = 873 and was obtained after 102 seconds.
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TV value Time (seconds)

PSM 919 2217
SM 873 102

Table 1: Performance comparison of PSM and SM when producing the reconstructions in
Figure 2.

output. The TV of the SM output was 876, which is also less than that of the output

of PSM. The SM output is shown in Figure 2(b).

As summarized in Table 1, with the stopping rule that guarantees that the output

of the SM is at least as constraints-compatible as the output of the PSM, the SM

showed clearly superior e�cacy to the PSM: it obtained a result with a lower TV value

at less than one twentieth of the computational cost.

6 Conclusions

The superiorization methodology (SM) allows the conversion of a feasibility-seeking

algorithm, designed to �nd an ε-compatible solution of the constraints, into a superi-

orized algorithm that inserts, into the feasibility-seeking algorithm, objective function

reduction steps without ruining the guaranteed feasibility-seeking nature of the algo-

rithm. The superiorized algorithm interlaces objective function nonascent steps into the

original process in an automatic manner. In case of strong perturbation resilience of

the original feasibility-seeking algorithm, mathematical results indicate why the supe-

riorized algorithm will be e�cacious for producing an an ε-compatible solution output

with a low value of the objective function.

We have presented an example for which the SM �nds a better solution to a con-

strained minimization problems than the projected subgradient method (PSM), and

in signi�cantly less computation time. This �nding is understandable in view of the

nature of how the methods interlace feasibility oriented activities with optimization ac-

tivities. While the PSM requires a projection onto the feasible region of the constrained

minimization problem, the SM needs to do only projections onto the individual con-

straints whose intersection is the feasible region. We demonstrated this experimentally

on a large-sized application that is modeled, and needs to be solved, as a constrained

minimization problem.

Acknowledgments. We would like to acknowledge the generous support by Dr.

Ernesto Gomez and Dr. Keith Schubert in allowing us to use the GP-GPU cluster at

the Department of Computer Science and Engineering at California State University

San Bernardino. We are also grateful to Joanna Klukowska for her advice on using

optimized compilation for speeding up SNARK09. This work was supported by the

United States-Israel Binational Science Foundation (BSF) Grant No. 200912, the U.S.

Department of Defense Prostate Cancer Research Program Award No. W81XWH-12-1-

0122, the National Science Foundation Award No. DMS-1114901, the U.S. Department

of Army Award No. W81XWH-10-1-0170, and by Grant No. R01EB013118 from the

National Institute of Biomedical Imaging and Bioengineering and the National Sci-

ence Foundation. The contents of this publication is solely the responsibility of the

authors and does not necessarily represent the o�cial views of the National Institute

of Biomedical Imaging and Bioengineering or the National Institutes of Health.



20 Y. Censor, R. Davidi, G.T. Herman, R.W. Schulte and L. Tetruashvili

References

1. Aharoni, R., Censor, Y.: Block-iterative projection methods for parallel computation of
solutions to convex feasibility problems. Linear Algebra Appl. 120, 165�175 (1989)

2. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility
problems. SIAM Rev. 38, 367�426 (1996)

3. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer, New York, NY, USA (2011)

4. Bauschke, H.H., Koch, V.R.: Projection methods: Swiss army knives for solv-
ing feasibility and best approximation problems with halfspaces. Tech. rep.,
http://arxiv.org/abs/1301.4506v1 (2012)

5. Beck, A., Teboulle, M.: Mirror descent and nonlinear projected subgradient methods for
convex optimization. Oper. Res. Lett. 31, 167�175 (2003)

6. Boyd, S., Mutapcic, A.: Subgradient methods (2007). Course Notes, http :
//www.stanford.edu/class/ee364b/notes/subgrad_method_notes.pdf

7. Butnariu, D., Davidi, R., Herman, G.T., Kazantsev, I.G.: Stable convergence behavior
under summable perturbations of a class of projection methods for convex feasibility and
optimization problems. IEEE J. Sel. Topics Signal Process. 1, 540�547 (2007)

8. Cegielski, A.: Iterative methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes
in Mathematics 2057, Springer-Verlag, Berlin, Heidelberg, Germany (2012)

9. Censor, Y., Chen, W., Combettes, P.L., Davidi, R., Herman, G.T.: On the e�ectiveness
of projection methods for convex feasibility problems with linear inequality constraints.
Comput. Optim. Appl. 51, 1065�1088 (2012)

10. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iter-
ative algorithms. Inverse Problems 26, 065,008 (2010)

11. Censor, Y., Elfving, T., Herman, G.T.: Averaging strings of sequential iterations for con-
vex feasibility problems. In: D. Butnariu, Y. Censor, S. Reich (eds.) Inherently Parallel
Algorithms in Feasibility and Optimization and Their Applications, pp. 101�114. Elsevier
Science Publishers, Amsterdam (2001)

12. Censor, Y., Segal, A.: On the string averaging method for sparse common �xed point
problems. Int. Trans. Oper. Res. 16, 481�494 (2009)

13. Censor, Y., Segal, A.: On string-averaging for sparse problems and on the split common
�xed point problem. Contemp. Math. 513, 125�142 (2010)

14. Censor, Y., Tom, E.: Convergence of string-averaging projection schemes for inconsistent
convex feasibility problems. Optim. Methods Softw. 18, 543�554 (2003)

15. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications.
Oxford University Press, New York, NY, USA (1997)

16. Combettes, P.L., Pesquet, J.C.: Image restoration subject to a total variation constraint.
IEEE Trans. Image Process. 13, 1213�1222 (2004)

17. Davidi, R., Herman, G.T., Censor, Y.: Perturbation-resilient block-iterative projection
methods with application to image reconstruction from projections. Int. Trans. Oper.
Res. 16, 505�524 (2009)

18. Davidi, R., Herman, G.T., Klukowska, J.: SNARK09: A program-
ming system for the reconstruction of 2D images from 1D projections.
http://www.dig.cs.gc.cuny.edu/software/snark09/ (2009)

19. Fletcher, R., Ley�er, S.: Nonlinear programming without a penalty function. Math. Pro-
gram. Ser. A 91, 239�269 (2002)

20. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from
Projections, 2nd edn. Springer (2009)

21. Herman, G.T., Davidi, R.: Image reconstruction from a small number of projections. In-
verse Problems 24, 045,011 (2008)

22. Herman, G.T., Garduño, E., Davidi, R., Censor, Y.: Superiorization: An optimization
heuristic for medical physics. Med. Phys. 39, 5532�5546 (2012)

23. Jin, W., Censor, Y., Jiang, M.: A heuristic superiorization-like approach to biolumines-
cence tomography. In: International Federation for Medical and Biological Engineering
(IFMBE) Proceedings, vol. 39, pp. 1026�1029 (2012)

24. Klukowska, J., Davidi, R., Herman, G.T.: SNARK09 - A software package for reconstruc-
tion of 2D images from 1D projections. Comput. Methods Programs Biomed. (to appear)

25. Luo, S., Zhou, T.: Superiorization of em algorithm and its application in single-photon
emission computed tomography (spect). Tech. rep., http://arxiv.org/abs/1209.6116 (2012)



Projected subgradient minimization versus superiorization 21

26. Nedi¢, A.: Random algorithms for convex minimization problems. Math. Program. Ser. B
129, 225�253 (2011)

27. Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer Academic Publish-
ers, Boston/Doredrecht/London (2004)

28. Nesterov, Y.E.: A method for solving the convex programming problem with convergence
rate O(1/k2). Soviet Math. Doklady 27, 372�376 (1983)

29. Neto, E.S.H., De Pierro, Á.R.: On perturbed steepest descent methods with inexact line
search for bilevel convex optimization. Optimization 60, 991�1008 (2011)

30. Neto, E.S.H., Pierro, Á.R.D.: Incremental subgradients for constrained convex optimiza-
tion: A uni�ed framework and new methods. SIAM J. Optim. 20, 1547�1572 (2009)

31. Nikazad, T., Davidi, R., Herman, G.: Accelerated perturbation-resilient block-iterative
projection methods with application to image reconstruction. Inverse Problems 28, 035,005
(2012)

32. Nurminski, E.: The use of additional diminishing disturbances in Fejer models of iterative
algorithms. Comput. Math. Math. Phys. 48, 2154�2161 (2008). Original Russian Text:
E.A. Nurminski, published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
48 (2008), 2121�2128

33. Nurminski, E.A.: Fejer processes with diminishing disturbances. Doklady Mathematics 78,
755�758 (2008). Original Russian text: E.A. Nurminski, published in: Doklady Akademii
Nauk 422 (2008), 601�604

34. Nurminski, E.A.: Envelope stepsize control for iterative algorithms based on Fejer processes
with attractants. Optim. Methods Softw. 25, 97�108 (2010)

35. Nurminski, E.A.: Fejer algorithms with an adaptive step. Comput. Math. Math. Phys.
51, 741�750 (2011). Original Russian text: E.A. Nurminski, published in: Zhurnal Vychis-
litel'noi Matematiki i Matematicheskoi Fiziki 51 (2011), 791�801

36. Penfold, S.N., Schulte, R.W., Censor, Y., Bashkirov, V., McAllister, S., Schubert, K.E.,
Rosenfeld, A.B.: Block-iterative and string-averaging projection algorithms in proton com-
puted tomography image reconstruction. In: Y. Censor, M. Jiang, G. Wang (eds.) Biomed-
ical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Prob-
lems, pp. 347�367. Medical Physics Publishing, Madison, WI, USA (2010)

37. Penfold, S.N., Schulte, R.W., Censor, Y., Rosenfeld, A.B.: Total variation superiorization
schemes in proton computed tomography image reconstruction. Med. Phys. 37, 5887�5895
(2010)

38. Poljak, B.T.: A general method of solving extremum problems. Soviet Math. Dokl. 8,
593�597 (1967)

39. Polyak, B.T.: Minimization of unsmooth functionals. USSR Comput. Maths. Math. Phys.
9, 14�29 (1969)

40. Ram, S.S., Nedi¢, A., Veeravalli, V.: Incremental stochastic subgradient algorithms for
convex optimization. SIAM J. Optim. 20, 691�717 (2009)

41. Ruszczy«ski, A.: Nonlinear Optimization. Princeton University Press, Princeton, NJ, USA
(2006)

42. Shor, N.Z.: Minimization Methods for Non-Di�erentiable Functions. Springer-Verlag,
Berlin, Heidelberg, Germany (1985)

43. Sidky, E.Y., Duchin, Y., Pan, X., Ullberg, C.: A constrained, total-variation minimization
algorithm for low-intensity x-ray CT. Med. Phys. 38, S117�S125 (2011)

44. Sidky, E.Y., Kao, C., Pan, X.: Image reconstruction in circular cone-beam computed to-
mography by constrained, total-variation minimization. Phys. Med. Biol. 53, 4777�4807
(2008)


	Full_Form_SF298UnlimitedDistributionA_filled
	Binder4.pdf
	report3
	MP paper - Superiorization - published
	Compare-Gabor-JOTA-040213


